302 research outputs found

    Exploring the Design of mHealth Systems for Health Behavior Change using Mobile Biosensors

    Get PDF
    A person’s health behavior plays a vital role in mitigating their risk of disease and promoting positive health outcomes. In recent years, mHealth systems have emerged to offer novel approaches for encouraging and supporting users in changing their health behavior. Mobile biosensors represent a promising technology in this regard; that is, sensors that collect physiological data (e.g., heart rate, respiration, skin conductance) that individuals wear, carry, or access during their normal daily activities. mHealth system designers have started to use the health information from physiological data to deliver behavior-change interventions. However, little research provides guidance about how one can design mHealth systems to use mobile biosensors for health behavior change. In order to address this research gap, we conducted an exploratory study. Following a hybrid approach that combines deductive and inductive reasoning, we integrated a body of fragmented literature and conducted 30 semi-structured interviews with mHealth stakeholders. From this study, we developed a theoretical framework and six general design guidelines that shed light on the theoretical pathways for how the mHealth interface can facilitate behavior change and provide practical design considerations

    A Framework for AI-enabled Proactive mHealth with Automated Decision-making for a User’s Context

    Get PDF
    Health promotion is to enable people to take control over their health. Digital health with mHealth empowers users to establish proactive health, ubiquitously. The users shall have increased control over their health to improve their life by being proactive. To develop proactive health with the principles of prediction, prevention, and ubiquitous health, artificial intelligence with mHealth can play a pivotal role. There are various challenges for establishing proactive mHealth. For example, the system must be adaptive and provide timely interventions by considering the uniqueness of the user. The context of the user is also highly relevant for proactive mHealth. The context provides parameters as input along with information to formulate the current state of the user. Automated decision-making is significant with user-level decision-making as it enables decisions to promote well-being by technological means without human involvement. This paper presents a design framework of AI-enabled proactive mHealth that includes automated decision-making with predictive analytics, Just-in-time adaptive interventions and a P5 approach to mHealth. The significance of user-level decision-making for automated decision-making is presented. Furthermore, the paper provides a holistic view of the user's context with profile and characteristics. The paper also discusses the need for multiple parameters as inputs, and the identification of sources e.g., wearables, sensors, and other resources, with the challenges in the implementation of the framework. Finally, a proof-of-concept based on the framework provides design and implementation steps, architecture, goals, and feedback process. The framework shall provide the basis for the further development of AI-enabled proactive mHealth

    Alcohol Use Disorder in the Age of Technology: A Review of Wearable Biosensors in Alcohol Use Disorder Treatment

    Get PDF
    Biosensors enable observation and understanding of latent physiological occurrences otherwise unknown or invasively detected. Wearable biosensors monitoring physiological constructs across a wide variety of mental and physical health conditions have become an important trend in innovative research methodologies. Within substance use research, explorations of biosensor technology commonly focus on identifying physiological indicators of intoxication to increase understanding of addiction etiology and to inform treatment recommendations. In this review, we examine the state of research in this area as it pertains to treatment of alcohol use disorders specifically highlighting the gaps in our current knowledge with recommendations for future research. Annually, alcohol use disorders affect approximately 15 million individuals. A primary focus of existing wearable technology-based research among people with alcohol use disorders is identifying alcohol intoxication. A large benefit of wearable biosensors for this purpose is they provide continuous readings in a passive manner compared with the gold standard measure of blood alcohol content (BAC) traditionally measured intermittently by breathalyzer or blood draw. There are two primary means of measuring intoxication with biosensors: gait and sweat. Gait changes have been measured via smart sensors placed on the wrist, in the shoe, and mobile device sensors in smart phones. Sweat measured by transdermal biosensors detects the presence of alcohol in the blood stream correlating to BAC. Transdermal biosensors have been designed in tattoos/skin patches, shirts, and most commonly, devices worn on the ankle or wrist. Transdermal devices were initially developed to help monitor court-ordered sobriety among offenders with alcohol use disorder. These devices now prove most useful in continuously tracking consumption throughout clinical trials for behavioral treatment modalities. More recent research has started exploring the uses for physical activity trackers and physiological arousal sensors to guide behavioral interventions for relapse prevention. While research has begun to demonstrate wearable devices\u27 utility in reducing alcohol consumption among individuals aiming to cutdown on their drinking, monitoring sustained abstinence in studies exploring contingency management for alcohol use disorders, and facilitating engagement in activity-based treatment interventions, their full potential to further aid in understanding of, and treatment for, alcohol use disorders has yet to be explored

    Digital Health Interventions (DHIs) to Support the Management of Children and Adolescents with Sickle‐Cell Disease

    Get PDF
    Sickle‐cell disease (SCD) is a very complex disorder alluding to all areas of medicine. Nevertheless, basic preventive and therapeutic interventions in patients suffering from SCD are extremely simple. However, in everyday life it is sometimes virtually impossible to motivate children and young adolescents to effectively self‐manage their disorder at an early stage. Digital health interventions (DHIs) provide new opportunities to support self‐management behaviours. DHIs may facilitate daily and recurrent routines such as drug intake or appointments along with helping the patients to better cope with their disease. This may be realized through mobile‐training programmes, disease‐specific social networks using secure communication channels, diaries, blogs and even games. Indeed, there are fascinating opportunities for modern disease‐training programmes to take advantage of several media that can be combined and didactically optimized to meet the individual needs and intellectual abilities of different patients. The technological progress is rapid, extremely dynamic and highly creative. Our chapter gives an overview of the multifarious world of DHIs with a focus on smartphone applications known as mobile health apps (mHealth apps). We elucidate the potential reasons why we think that numerous apps for SCD patients have not been successful and which app features developers should consider if they want to create a popular patient app

    Intent and the Use of Wearables in the Workplace – A Model Development

    Get PDF
    Due to reasons like demographic changes and variations in the spectrum of illness, worldwide expenditures in the health market have exploded.Contemporary information systems are evolving rapidly in the field of ubiquitous computing and nowadays support health in various fields. Wearables and tracking technologies have emerged in private life for health and fitness support.This adoption reveals future possibilities for innovating the health-supporting systems in the workplace. The crucial point of introducing wearables in the occupational health management system is the acceptance of employees. This paper provides a literature-driven measurement model to explain the behavioral intention to use wearables in the occupational health management system. The model provided is supported by 17 hypothesized relationships between relevant constructs and validated by card-sorting

    The Trajectory of IT in Healthcare at HICSS: A Literature Review, Analysis, and Future Directions

    Get PDF
    Research has extensively demonstrated that healthcare industry has rapidly implemented and adopted information technology in recent years. Research in health information technology (HIT), which represents a major component of the Hawaii International Conference on System Sciences, demonstrates similar findings. In this paper, review the literature to better understand the work on HIT that researchers have conducted in HICSS from 2008 to 2017. In doing so, we identify themes, methods, technology types, research populations, context, and emerged research gaps from the reviewed literature. With much change and development in the HIT field and varying levels of adoption, this review uncovers, catalogs, and analyzes the research in HIT at HICSS in this ten-year period and provides future directions for research in the field

    Health Wearable Tools and Health Promotion

    Get PDF
    The application of wearable technology for health purposes is a multidisciplinary research topic. To summarize key contributions and simultaneously identify outstanding gaps in research, the input-mechanism-output (I-M-O) framework was applied to synthesize findings from 275 relevant papers in the period 2010–2021. Eighteen distinct cross-disciplinary themes were identified and organized under the I-M-O framework. Studies that covered input factors have largely been technocentric, exploring the design of various health wearables, with less emphasis on usability. While studies on user acceptance and engagement are increasing, there remains room for growth in user- centric aspects such as engagement. While measurement of physiological health indictors has grown more sophisticated due to sensitivity of sensors and the advancements in predictive algorithms, a rapidly growing area of research is that of measuring and tracking mental states and emotional health.Relatively few studies explore theoretically backed explanations of the role of health wearables, with technocentric theories predicting adoption favored. These mainly focused on mechanisms of adoption, while postadoption use and health behavior change were less explored. As a consequence, compared to adoption mechanisms, there is an opportunity to increase our understanding of the continued use of wearables and their effects on sustained health behavior change. While a range of incentives such as social, feedback, financial, and gamification are being tested, it is worth noting that negative attitudes, such as privacy concerns, are being paid much more attention as well. Output factors were studied in both individual and organizational settings, with the former receiving considerably more attention than the latter. The progress of research on health wearables was discussed from an interdisciplinary angle, and the role of social scientists was highlighted for the advancement of research on wearable health

    Trends in Patient Generated Data – An Initial Review

    Get PDF
    In recent years, patient-centered care has gained significant momentum in healthcare and the patient is more involved as an active participant in data generation. In this state of the art review we identify trends in patient generated data (PGD) and areas in need of further research by reviewing papers published in the health tracks of five high-ranked IS conferences. Our results suggest that research is mostly empirically grounded and primarily focuses on sickness rather than wellness issues. There is an emphasis on chronic diseases and self-management, dealing with user motivation, and a focus mostly on mobile apps. Though technology plays an important part, there is scarce problematization of and theorization on PGD. Further studies are needed that investigate the effects of PGD on patients and healthcare providers, include a wider range of issues and incorporate wearable devices more comprehensively

    The datafication of health

    Get PDF
    Over the past decade, data-intensive logics and practices have come to affect domains of contemporary life ranging from marketing and policy making to entertainment and education; at every turn, there is evidence of “datafication” or the conversion of qualitative aspects of life into quantified data. The datafication of health unfolds on a number of different scales and registers, including data-driven medical research and public health infrastructures, clinical health care, and self-care practices. For the purposes of this review, we focus mainly on the latter two domains, examining how scholars in anthropology, sociology, science and technology studies, and media and communication studies have begun to explore the datafication of clinical and self-care practices. We identify the dominant themes and questions, methodological approaches, and analytical resources of this emerging literature, parsing these under three headings: datafied power, living with data, and data–human mediations. We conclude by urging scholars to pay closer attention to how datafication is unfolding on the “other side” of various digital divides (e.g., financial, technological, geographic), to experiment with applied forms of research and data activism, and to probe links to areas of datafication that are not explicitly related to health.Peer reviewe
    • 

    corecore