819 research outputs found

    Using Rollback Avoidance to Mitigate Failures in Next-Generation Extreme-Scale Systems

    Get PDF
    High-performance computing (HPC) systems enable scientists to numerically model complex phenomena in many important physical systems. The next major milestone in the development of HPC systems is the construction of the first supercomputer capable executing more than an exaflop, 10^18 floating point operations per second. On systems of this scale, failures will occur much more frequently than on current systems. As a result, resilience is a key obstacle to building next-generation extreme-scale systems. Coordinated checkpointing is currently the most widely-used mechanism for handling failures on HPC systems. Although coordinated checkpointing remains effective on current systems, increasing the scale of today\u27s systems to build next-generation systems will increase the cost of fault tolerance as more and more time is taken away from the application to protect against or recover from failure. Rollback avoidance techniques seek to mitigate the cost of checkpoint/restart by allowing an application to continue its execution rather than rolling back to an earlier checkpoint when failures occur. These techniques include failure prediction and preventive migration, replicated computation, fault-tolerant algorithms, and software-based memory fault correction. In this thesis, I examine how rollback avoidance techniques can be used to address failures on extreme-scale systems. Using a combination of analytic modeling and simulation, I evaluate the potential impact of rollback avoidance on these systems. I then present a novel rollback avoidance technique that exploits similarities in application memory. Finally, I examine the feasibility of using this technique to protect against memory faults in kernel memory

    PIKA: A Network Service for Multikernel Operating Systems

    Get PDF
    PIKA is a network stack designed for multikernel operating systems that target potential future architectures lacking cache-coherent shared memory but supporting message passing. PIKA splits the network stack into several servers that communicate using a low-overhead message passing layer. A key challenge faced by PIKA is the maintenance of shared state, such as a single accept queue and load balance information. PIKA addresses this challenge using a speculative 3-way handshake for connection acceptance, and a new distributed load balancing scheme for spreading connections. A PIKA prototype achieves competitive performance, excellent scalability, and low service times under load imbalance on commodity hardware. Finally, we demonstrate that splitting network stack processing by function across separate cores is a net loss on commodity hardware, and we describe conditions under which it may be advantageous

    HeTM: Transactional Memory for Heterogeneous Systems

    Full text link
    Modern heterogeneous computing architectures, which couple multi-core CPUs with discrete many-core GPUs (or other specialized hardware accelerators), enable unprecedented peak performance and energy efficiency levels. Unfortunately, though, developing applications that can take full advantage of the potential of heterogeneous systems is a notoriously hard task. This work takes a step towards reducing the complexity of programming heterogeneous systems by introducing the abstraction of Heterogeneous Transactional Memory (HeTM). HeTM provides programmers with the illusion of a single memory region, shared among the CPUs and the (discrete) GPU(s) of a heterogeneous system, with support for atomic transactions. Besides introducing the abstract semantics and programming model of HeTM, we present the design and evaluation of a concrete implementation of the proposed abstraction, which we named Speculative HeTM (SHeTM). SHeTM makes use of a novel design that leverages on speculative techniques and aims at hiding the inherently large communication latency between CPUs and discrete GPUs and at minimizing inter-device synchronization overhead. SHeTM is based on a modular and extensible design that allows for easily integrating alternative TM implementations on the CPU's and GPU's sides, which allows the flexibility to adopt, on either side, the TM implementation (e.g., in hardware or software) that best fits the applications' workload and the architectural characteristics of the processing unit. We demonstrate the efficiency of the SHeTM via an extensive quantitative study based both on synthetic benchmarks and on a porting of a popular object caching system.Comment: The current work was accepted in the 28th International Conference on Parallel Architectures and Compilation Techniques (PACT'19

    3rd Many-core Applications Research Community (MARC) Symposium. (KIT Scientific Reports ; 7598)

    Get PDF
    This manuscript includes recent scientific work regarding the Intel Single Chip Cloud computer and describes approaches for novel approaches for programming and run-time organization

    Autoscopy Jr.: Intrusion Detection for Embedded Control Systems

    Get PDF
    Securing embedded control systems within the power grid presents a unique challenge: on top of the resource restrictions inherent to these devices, SCADA systems must also accommodate strict timing requirements that are non-negotiable, and their massive scale greatly amplifies costs such as power consumption. These constraints make the conventional approach to host intrusion detection--namely, employing virtualization in some manner--too costly or impractical for embedded control systems within critical infrastructure. Instead, we take an in-kernel approach to system protection, building upon the Autoscopy system developed by Ashwin Ramaswamy that places probes on indirectly-called functions and uses them to monitor its host system for behavior characteristic of control-flow-altering malware, such as rootkits. In this thesis, we attempt to show that such a method would indeed be a viable method of protecting embedded control systems. We first identify several issues with the original prototype, and present a new version of the program (dubbed Autoscopy Jr.) that uses trusted location lists to verify that control is coming from a known, trusted location inside our kernel. Although we encountered additional performance overhead when testing our new design, we developed a kernel profiler that allowed us to identify the probes responsible for this overhead and discard them, leaving us with a final probe list that generated less than 5% overhead on every one of our benchmark tests. Finally, we attempted to run Autoscopy Jr. on two specialized kernels (one with an optimized probing framework, and another with a hardening patch installed), finding that the former did not produce enough performance benefits to preclude using our profiler, and that the latter required a different method of scanning for indirect functions for Autoscopy Jr. to operate. We argue that Autoscopy Jr. is indeed a feasible intrusion detection system for embedded control systems, as it can adapt easily to a variety of system architectures and allows us to intelligently balance security and performance on these critical devices

    GPU devices for safety-critical systems: a survey

    Get PDF
    Graphics Processing Unit (GPU) devices and their associated software programming languages and frameworks can deliver the computing performance required to facilitate the development of next-generation high-performance safety-critical systems such as autonomous driving systems. However, the integration of complex, parallel, and computationally demanding software functions with different safety-criticality levels on GPU devices with shared hardware resources contributes to several safety certification challenges. This survey categorizes and provides an overview of research contributions that address GPU devices’ random hardware failures, systematic failures, and independence of execution.This work has been partially supported by the European Research Council with Horizon 2020 (grant agreements No. 772773 and 871465), the Spanish Ministry of Science and Innovation under grant PID2019-107255GB, the HiPEAC Network of Excellence and the Basque Government under grant KK-2019-00035. The Spanish Ministry of Economy and Competitiveness has also partially supported Leonidas Kosmidis with a Juan de la Cierva Incorporación postdoctoral fellowship (FJCI-2020- 045931-I).Peer ReviewedPostprint (author's final draft
    • …
    corecore