127 research outputs found

    An overview of next-generation architectures for machine learning: roadmap, opportunities and challenges in the IoT era

    Get PDF
    The number of connected Internet of Things (IoT) devices are expected to reach over 20 billion by 2020. These range from basic sensor nodes that log and report the data to the ones that are capable of processing the incoming information and taking an action accordingly. Machine learning, and in particular deep learning, is the de facto processing paradigm for intelligently processing these immense volumes of data. However, the resource inhibited environment of IoT devices, owing to their limited energy budget and low compute capabilities, render them a challenging platform for deployment of desired data analytics. This paper provides an overview of the current and emerging trends in designing highly efficient, reliable, secure and scalable machine learning architectures for such devices. The paper highlights the focal challenges and obstacles being faced by the community in achieving its desired goals. The paper further presents a roadmap that can help in addressing the highlighted challenges and thereby designing scalable, high-performance, and energy efficient architectures for performing machine learning on the edge

    Computing with Spintronics: Circuits and architectures

    Get PDF
    This thesis makes the following contributions towards the design of computing platforms with spintronic devices. 1) It explores the use of spintronic memories in the design of a domain-specific processor for an emerging class of data-intensive applications, namely recognition, mining and synthesis (RMS). Two different spintronic memory technologies — Domain Wall Memory (DWM) and STT-MRAM — are utilized to realize the different levels in the memory hierarchy of the domain-specific processor, based on their respective access characteristics. Architectural tradeoffs created by the use of spintronic memories are analyzed. The proposed design achieves 1.5X-4X improvements in energy-delay product compared to a CMOS baseline. 2) It describes the first attempt to use DWM in the cache hierarchy of general-purpose processors. DWM promises unparalleled density by packing several bits of data into each bit-cell. TapeCache, the proposed DWM-based cache architecture, utilizes suitable circuit and architectural optimizations to address two key challenges (i) the high energy and latency requirement of write operations and (ii) the need for shift operations to access the data stored in each DWM bit-cell. At the circuit level, DWM bit-cells that are tailored to the distinct design requirements of different levels in the cache hierarchy are proposed. At the architecture level, TapeCache proposes suitable cache organization and management policies to alleviate the performance impact of shift operations required to access data stored in DWM bit-cells. TapeCache achieves more than 7X improvements in both cache area and energy with virtually identical performance compared to an SRAM-based cache hierarchy. 3) It investigates the design of the on-chip memory hierarchy of general-purpose graphics processing units (GPGPUs)—massively parallel processors that are optimized for data-intensive high-throughput workloads—using DWM. STAG, a high density, energy-efficient Spintronic- Tape Architecture for GPGPU cache hierarchies is described. STAG utilizes different DWM bit-cells to realize different memory arrays in the GPGPU cache hierarchy. To address the challenge of high access latencies due to shifts, STAG predicts upcoming cache accesses by leveraging unique characteristics of GPGPU architectures and workloads, and prefetches data that are both likely to be accessed and require large numbers of shift operations. STAG achieves 3.3X energy reduction and 12.1% performance improvement over CMOS SRAM under iso-area conditions. 4) While the potential of spintronic devices for memories is widely recognized, their utility in realizing logic is much less clear. The thesis presents Spintastic, a new paradigm that utilizes Stochastic Computing (SC) to realize spintronic logic. In SC, data is encoded in the form of pseudo-random bitstreams, such that the probability of a \u271\u27 in a bitstream corresponds to the numerical value that it represents. SC can enable compact, low-complexity logic implementations of various arithmetic functions. Spintastic establishes the synergy between stochastic computing and spin-based logic by demonstrating that they mutually alleviate each other\u27s limitations. On the one hand, various building blocks of SC, which incur significant overheads in CMOS implementations, can be efficiently realized by exploiting the physical characteristics of spin devices. On the other hand, the reduced logic complexity and low logic depth of SC circuits alleviates the shortcomings of spintronic logic. Based on this insight, the design of spin-based stochastic arithmetic circuits, bitstream generators, bitstream permuters and stochastic-to-binary converter circuits are presented. Spintastic achieves 7.1X energy reduction over CMOS implementations for a wide range of benchmarks from the image processing, signal processing, and RMS application domains. 5) In order to evaluate the proposed spintronic designs, the thesis describes various device-to-architecture modeling frameworks. Starting with devices models that are calibrated to measurements, the characteristics of spintronic devices are successively abstracted into circuit-level and architectural models, which are incorporated into suitable simulation frameworks. (Abstract shortened by UMI.

    Adaptive memory-side last-level GPU caching

    Get PDF
    Emerging GPU applications exhibit increasingly high computation demands which has led GPU manufacturers to build GPUs with an increasingly large number of streaming multiprocessors (SMs). Providing data to the SMs at high bandwidth puts significant pressure on the memory hierarchy and the Network-on-Chip (NoC). Current GPUs typically partition the memory-side last-level cache (LLC) in equally-sized slices that are shared by all SMs. Although a shared LLC typically results in a lower miss rate, we find that for workloads with high degrees of data sharing across SMs, a private LLC leads to a significant performance advantage because of increased bandwidth to replicated cache lines across different LLC slices. In this paper, we propose adaptive memory-side last-level GPU caching to boost performance for sharing-intensive workloads that need high bandwidth to read-only shared data. Adaptive caching leverages a lightweight performance model that balances increased LLC bandwidth against increased miss rate under private caching. In addition to improving performance for sharing-intensive workloads, adaptive caching also saves energy in a (co-designed) hierarchical two-stage crossbar NoC by power-gating and bypassing the second stage if the LLC is configured as a private cache. Our experimental results using 17 GPU workloads show that adaptive caching improves performance by 28.1% on average (up to 38.1%) compared to a shared LLC for sharing-intensive workloads. In addition, adaptive caching reduces NoC energy by 26.6% on average (up to 29.7%) and total system energy by 6.1% on average (up to 27.2%) when configured as a private cache. Finally, we demonstrate through a GPU NoC design space exploration that a hierarchical two-stage crossbar is both more power- and area-efficient than full and concentrated crossbars with the same bisection bandwidth, thus providing a low-cost cooperative solution to exploit workload sharing behavior in memory-side last-level caches

    High Performance On-Chip Interconnects Design for Future Many-Core Architectures

    Get PDF
    Switch-based Network-on-Chip (NoC) is a widely accepted inter-core communication infrastructure for Chip Multiprocessors (CMPs). With the continued advance of CMOS technology, the number of cores on a single chip keeps increasing at a rapid pace. It is highly expected that many-core architectures with more than hundreds of processor cores will be commercialized in the near future. In such a large scale CMP system, NoC overheads are more dominant than computation power in determining overall system performance. Also, for modern computational workloads requiring abundant thread level parallelism (TLP), NoC design for highly-parallel, many-core accelerators such as General Purpose Graphics Processing Units (GPGPUs) is of primary importance in harnessing the potential of massive thread- and data-level parallelism. In these contexts, it is critical that NoC provides both low latency and high bandwidth within limited on-chip power and area budgets. In this dissertation, we explore various design issues inherent in future many-core architectures, CMPs and GPGPUs, to achieve both high performance and power efficiency. First, we deal with issues in using a promising next generation memory technology, Spin-Transfer Torque Magnetic RAM (STT-MRAM), for NoC input buffers in CMPs. Using a high density and low leakage memory offers more buffer capacities with the same die footprint, thus helping increase network throughput in NoC routers. However, its long latency and high power consumption in write operations still need to be addressed. Thus, we propose a hybrid design of input buffers using both SRAM and STT-MRAM to hide the long write latency efficiently. Considering that simple data migration in the hybrid buffer consumes more dynamic power compared to SRAM, we provide a lazy migration scheme that reduces the dynamic power consumption of the hybrid buffer. Second, we propose the first NoC router design that uses only STT-MRAM, providing much larger buffer space with less power consumption, while preserving data integrity. To hide the multicycle writes, we employ a multibank STT-MRAM buffer, a virtual channel with multiple banks where every incoming flit is seamlessly pipelined to each bank alternately. Our STT-MRAM design has aggressively reduced the retention time, resulting in a significant reduction in the latency and power overheads of write operations. To ensure data integrity against inadvertent bit flips from the thermal fluctuation during the given retention time, we propose a cost-efficient dynamic buffer refresh scheme combined with Error Correcting Codes (ECC) to detect and correct data corruption. Third, we present schemes for bandwidth-efficient on-chip interconnects in GPGPUs. GPGPUs place a heavy demand on the on-chip interconnect between the many cores and a few memory controllers (MCs). Thus, traffic is highly asymmetric, impacting on-chip resource utilization and system performance. Here, we analyze the communication demands of typical GPGPU applications, and propose efficient NoC designs to meet those demands
    • …
    corecore