4,099 research outputs found

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Challenges and complexities in application of LCA approaches in the case of ICT for a sustainable future

    Get PDF
    In this work, three of many ICT-specific challenges of LCA are discussed. First, the inconsistency versus uncertainty is reviewed with regard to the meta-technological nature of ICT. As an example, the semiconductor technologies are used to highlight the complexities especially with respect to energy and water consumption. The need for specific representations and metric to separately assess products and technologies is discussed. It is highlighted that applying product-oriented approaches would result in abandoning or disfavoring of new technologies that could otherwise help toward a better world. Second, several believed-untouchable hot spots are highlighted to emphasize on their importance and footprint. The list includes, but not limited to, i) User Computer-Interfaces (UCIs), especially screens and displays, ii) Network-Computer Interlaces (NCIs), such as electronic and optical ports, and iii) electricity power interfaces. In addition, considering cross-regional social and economic impacts, and also taking into account the marketing nature of the need for many ICT's product and services in both forms of hardware and software, the complexity of End of Life (EoL) stage of ICT products, technologies, and services is explored. Finally, the impact of smart management and intelligence, and in general software, in ICT solutions and products is highlighted. In particular, it is observed that, even using the same technology, the significance of software could be highly variable depending on the level of intelligence and awareness deployed. With examples from an interconnected network of data centers managed using Dynamic Voltage and Frequency Scaling (DVFS) technology and smart cooling systems, it is shown that the unadjusted assessments could be highly uncertain, and even inconsistent, in calculating the management component's significance on the ICT impacts.Comment: 10 pages. Preprint/Accepted of a paper submitted to the ICT4S Conferenc

    Ten questions concerning energy flexibility in buildings

    Get PDF
    Funding Information: The authors are key collaborators in the IEA EBC Annex 82 project. Dr. Li leads IEA EBC Annex 82 “Energy Flexible Buildings Towards Resilient Low Carbon Energy Systems.” Mr. Satchwell researches utility regulatory and business models that achieve greater deployment of energy efficiency, demand flexibility, and other distributed energy resources. Prof. Finn investigates demand response measures in the residential and commercial building sectors. Senior researcher Christensen researches the role of users in smart energy solutions and low-carbon energy transitions. Prof. MichaĂ«l Kummert's research focuses on modeling and control of building-scale and community-scale energy systems to optimize energy flexibility and resilience. Dr. Le DrĂ©au researches energy flexibility of buildings both at building and district scales, develops occupant behavior models and prediction techniques related to flexibility. Dr. Lopes is involved in two international projects funded by the European Union's H2020 programme where he is developing and applying energy flexibility characterization methodologies and optimization algorithms in several demonstration activities. Prof. Madsen leads a national research project ‘Energy Flexible Denmark’ and he focuses on grey-box modeling, digital twins, forecasting and control for smart buildings in smart grids. Dr. Salom research works focus on zero/positive energy buildings and districts and their interaction with energy infrastructures being involved in several international projects. Prof. Henze researches model predictive and reinforcement learning control and data analytics for the integration of building and district energy systems with the electric grid. Mr. Wittchen research works focus on zero/positive energy buildings and districts and implementation of European legislation on building's energy performance. Funding Information: The authors acknowledge the many organizations that directly or indirectly supported the completion of this article. We acknowledge the European Commission for the ARV (grant number 101036723 ), Syn.ikia (grant number 869918 ), Hestia (grant number 957823 ) projects; the Danish Energy Agency for supporting the Danish delegates participating IEA EBC Annex 82 through EUDP (grant number 64020-2131 ); Innovation Fund Denmark in relation to SEM4Cities ( IFD 0143–0004 ) and Flexible Energy Denmark ( IFD 8090-00069B ); the Building Technologies Office, Office of Energy Efficiency and Renewable Energy, at the US Department of Energy , under Lawrence Berkeley National Laboratory (contract number DE-AC02-05CH11231 ); the Center of Technology and Systems (CTS UNINOVA) and the Portuguese Foundation for Science and Technology (FCT) through the Strategic Program UIDB/00066/2020 ; Research Council of Norway in relation to Research Centre on Zero Emission Neighborhoods in Smart Cities - FME-ZEN (No. 2576609 ) and FlexBuild (No. 294920 ); the AGAUR Agency from the Generalitat de Catalunya through the project ComMit-20 ( 2020PANDE00116 ); the National Science and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN 2016-06643 ). Publisher Copyright: © 2022 The AuthorsDemand side energy flexibility is increasingly being viewed as an essential enabler for the swift transition to a low-carbon energy system that displaces conventional fossil fuels with renewable energy sources while maintaining, if not improving, the operation of the energy system. Building energy flexibility may address several challenges facing energy systems and electricity consumers as society transitions to a low-carbon energy system characterized by distributed and intermittent energy resources. For example, by changing the timing and amount of building energy consumption through advanced building technologies, electricity demand and supply balance can be improved to enable greater integration of variable renewable energy. Although the benefits of utilizing energy flexibility from the built environment are generally recognized, solutions that reflect diversity in building stocks, customer behavior, and market rules and regulations need to be developed for successful implementation. In this paper, we pose and answer ten questions covering technological, social, commercial, and regulatory aspects to enable the utilization of energy flexibility of buildings in practice. In particular, we provide a critical overview of techniques and methods for quantifying and harnessing energy flexibility. We discuss the concepts of resilience and multi-carrier energy systems and their relation to energy flexibility. We argue the importance of balancing stakeholder engagement and technology deployment. Finally, we highlight the crucial roles of standardization, regulation, and policy in advancing the deployment of energy flexible buildings.publishersversionpublishe

    Positive Energy Building Definition with the Framework, Elements and Challenges of the Concept

    Get PDF
    Buildings account for 36% of the final energy demand and 39% of CO2 emissions worldwide. Targets for increasing the energy efficiency of buildings and reducing building related emissions is an important part of the energy policy to reach the Paris agreement within the United Nations Framework Convention on Climate Change. While nearly zero energy buildings are the new norm in the EU, the research is advancing towards positive energy buildings, which contribute to the surrounding community by providing emission-free energy. This paper suggests a definition for positive energy building and presents the framework, elements, and challenges of the concept. In a positive energy building, the annual renewable energy production in the building site exceeds the energy demand of the building. This increases two-way interactions with energy grids, requiring a broader approach compared to zero energy buildings. The role of energy flexibility grows when the share of fluctuating renewable energy increases. The presented framework is designed with balancing two important perspectives: technical and user-centric approaches. It can be accommodated to different operational conditions, regulations, and climates. Potential challenges and opportunities are also discussed, such as the present issues in the building’s balancing boundary, electric vehicle integration, and smart readiness indicators
    • 

    corecore