357,884 research outputs found

    Temperature Evaluation of NoC Architectures and Dynamically Reconfigurable NoC

    Get PDF
    Advancements in the field of chip fabrication led to the integration of a large number of transistors in a small area, giving rise to the multi–core processor era. Massive multi–core processors facilitate innovation and research in the field of healthcare, defense, entertainment, meteorology and many others. Reduction in chip area and increase in the number of on–chip cores is accompanied by power and temperature issues. In high performance multi–core chips, power and heat are predominant constraints. High performance massive multicore systems suffer from thermal hotspots, exacerbating the problem of reliability in deep submicron technologies. High power consumption not only increases the chip temperature but also jeopardizes the integrity of the system. Hence, there is a need to explore holistic power and thermal optimization and management strategies for massive on–chip multi–core environments. In multi–core environments, the communication fabric plays a major role in deciding the efficiency of the system. In multi–core processor chips this communication infrastructure is predominantly a Network–on–Chip (NoC). Tradition NoC designs incorporate planar interconnects as a result these NoCs have long, multi–hop wireline links for data exchange. Due to the presence of multi–hop planar links such NoC architectures fall prey to high latency, significant power dissipation and temperature hotspots. Networks inspired from nature are envisioned as an enabling technology to achieve highly efficient and low power NoC designs. Adopting wireless technology in such architectures enhance their performance. Placement of wireless interconnects (WIs) alters the behavior of the network and hence a random deployment of WIs may not result in a thermally optimal solution. In such scenarios, the WIs being highly efficient would attract high traffic densities resulting in thermal hotspots. Hence, the location and utilization of the wireless links is a key factor in obtaining a thermal optimal highly efficient Network–on–chip. Optimization of the NoC framework alone is incapable of addressing the effects due to the runtime dynamics of the system. Minimal paths solely optimized for performance in the network may lead to excessive utilization of certain NoC components leading to thermal hotspots. Hence, architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance and energy–efficient multicore systems. This work contributes at exploring various wired and wireless NoC architectures that achieve best trade–offs between temperature, performance and energy–efficiency. It further proposes an adaptive routing scheme which factors in the thermal profile of the chip. The proposed routing mechanism dynamically reacts to the thermal profile of the chip and takes measures to avoid thermal hotspots, achieving a thermally efficient dynamically reconfigurable network on chip architecture

    Dynamic Thermal and Power Management: From Computers to Buildings

    Get PDF
    Thermal and power management have become increasingly important for both computing and physical systems. Computing systems from real-time embedded systems to data centers require effective thermal and power management to prevent overheating and save energy. In the mean time, as a major consumer of energy buildings face challenges to reduce the energy consumption for air conditioning while maintaining comfort of occupants. In this dissertation we investigate dynamic thermal and power management for computer systems and buildings. (1) We present thermal control under utilization bound (TCUB), a novel control-theoretic thermal management algorithm designed for single core real-time embedded systems. A salient feature of TCUB is to maintain both desired processor temperature and real-time performance. (2) To address unique challenges posed by multicore processors, we develop the real-time multicore thermal control (RT-MTC) algorithm. RT-MTC employs a feedback control loop to enforce the desired temperature and CPU utilization of the multicore platform via dynamic frequency and voltage scaling. (3) We research dynamic thermal management for real-time services running on server clusters. We develop the control-theoretic thermal balancing (CTB) to dynamically balance temperature of servers via distributing clients\u27 service requests to servers. Next, (4) we propose CloudPowerCap, a power cap management system for virtualized cloud computing infrastructure. The novelty of CloudPowerCap lies in an integrated approach to coordinate power budget management and resource management in a cloud computing environment. Finally we expand our research to physical environment by exploring several fundamental problems of thermal and power management on buildings. We analyze spatial and temporal data acquired from an real-world auditorium instrumented by a multi-modal sensor network. We propose a data mining technique to determine the appropriate number and location of temperature sensors for estimating the spatiotemporal temperature distribution of the auditorium. Furthermore, we explore the potential energy savings that can be achieved through occupancy-based HVAC scheduling based on real occupancy data of the auditorium

    The Thermal-Constrained Real-Time Systems Design on Multi-Core Platforms -- An Analytical Approach

    Get PDF
    Over the past decades, the shrinking transistor size enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Over the past decades, the shrinking transistor size, benefited from the advancement of IC technology, enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Different from many existing DTM heuristics that are based on simple intuitions, we seek to address the thermal problems through a rigorous analytical approach, to achieve the high predictability requirement in real-time system design. In this regard, we have made a number of important contributions. First, we develop a series of lemmas and theorems that are general enough to uncover the fundamental principles and characteristics with regard to the thermal model, peak temperature identification and peak temperature reduction, which are key to thermal-constrained real-time computer system design. Second, we develop a design-time frequency and voltage oscillating approach on multi-core platforms, which can greatly enhance the system throughput and its service capacity. Third, different from the traditional workload balancing approach, we develop a thermal-balancing approach that can substantially improve the energy efficiency and task partitioning feasibility, especially when the system utilization is high or with a tight temperature constraint. The significance of our research is that, not only can our proposed algorithms on throughput maximization and energy conservation outperform existing work significantly as demonstrated in our extensive experimental results, the theoretical results in our research are very general and can greatly benefit other thermal-related research

    Integrating modes of policy analysis and strategic management practice : requisite elements and dilemmas

    Get PDF
    There is a need to bring methods to bear on public problems that are inclusive, analytic, and quick. This paper describes the efforts of three pairs of academics working from three different though complementary theoretical foundations and intervention backgrounds (i.e., ways of working) who set out together to meet this challenge. Each of the three pairs had conducted dozens of interventions that had been regarded as successful or very successful by the client groups in dealing with complex policy and strategic problems. One approach focused on leadership issues and stakeholders, another on negotiating competitive strategic intent with attention to stakeholder responses, and the third on analysis of feedback ramifications in developing policies. This paper describes the 10 year longitudinal research project designed to address the above challenge. The important outcomes are reported: the requisite elements of a general integrated approach and the enduring puzzles and tensions that arose from seeking to design a wide-ranging multi-method approach

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering
    corecore