5,152 research outputs found

    Natural Language Query in the Biochemistry and Molecular Biology Domains Based on Cognition Search™

    Get PDF
    Motivation: With the tremendous growth in scientific literature, it is necessary to improve upon the standard pattern matching style of the available search engines. Semantic NLP may be the solution to this problem. Cognition Search (CSIR) is a natural language technology. It is best used by asking a simple question that might be answered in textual data being queried, such as MEDLINE. CSIR has a large English dictionary and semantic database. Cognition’s semantic map enables the search process to be based on meaning rather than statistical word pattern matching and, therefore, returns more complete and relevant results. The Cognition Search engine uses downward reasoning and synonymy which also improves recall. It improves precision through phrase parsing and word sense disambiguation.
Result: Here we have carried out several projects to "teach" the CSIR lexicon medical, biochemical and molecular biological language and acronyms from curated web-based free sources. Vocabulary from the Alliance for Cell Signaling (AfCS), the Human Genome Nomenclature Consortium (HGNC), the United Medical Language System (UMLS) Meta-thesaurus, and The International Union of Pure and Applied Chemistry (IUPAC) was introduced into the CSIR dictionary and curated. The resulting system was used to interpret MEDLINE abstracts. Meaning-based search of MEDLINE abstracts yields high precision (estimated at >90%), and high recall (estimated at >90%), where synonym information has been encoded. The present implementation can be found at http://MEDLINE.cognition.com. 
&#xa

    Mining Entity Synonyms with Efficient Neural Set Generation

    Full text link
    Mining entity synonym sets (i.e., sets of terms referring to the same entity) is an important task for many entity-leveraging applications. Previous work either rank terms based on their similarity to a given query term, or treats the problem as a two-phase task (i.e., detecting synonymy pairs, followed by organizing these pairs into synonym sets). However, these approaches fail to model the holistic semantics of a set and suffer from the error propagation issue. Here we propose a new framework, named SynSetMine, that efficiently generates entity synonym sets from a given vocabulary, using example sets from external knowledge bases as distant supervision. SynSetMine consists of two novel modules: (1) a set-instance classifier that jointly learns how to represent a permutation invariant synonym set and whether to include a new instance (i.e., a term) into the set, and (2) a set generation algorithm that enumerates the vocabulary only once and applies the learned set-instance classifier to detect all entity synonym sets in it. Experiments on three real datasets from different domains demonstrate both effectiveness and efficiency of SynSetMine for mining entity synonym sets.Comment: AAAI 2019 camera-ready versio

    Text Mining and Gene Expression Analysis Towards Combined Interpretation of High Throughput Data

    Get PDF
    Microarrays can capture gene expression activity for thousands of genes simultaneously and thus make it possible to analyze cell physiology and disease processes on molecular level. The interpretation of microarray gene expression experiments profits from knowledge on the analyzed genes and proteins and the biochemical networks in which they play a role. The trend is towards the development of data analysis methods that integrate diverse data types. Currently, the most comprehensive biomedical knowledge source is a large repository of free text articles. Text mining makes it possible to automatically extract and use information from texts. This thesis addresses two key aspects, biomedical text mining and gene expression data analysis, with the focus on providing high-quality methods and data that contribute to the development of integrated analysis approaches. The work is structured in three parts. Each part begins by providing the relevant background, and each chapter describes the developed methods as well as applications and results. Part I deals with biomedical text mining: Chapter 2 summarizes the relevant background of text mining; it describes text mining fundamentals, important text mining tasks, applications and particularities of text mining in the biomedical domain, and evaluation issues. In Chapter 3, a method for generating high-quality gene and protein name dictionaries is described. The analysis of the generated dictionaries revealed important properties of individual nomenclatures and the used databases (Fundel and Zimmer, 2006). The dictionaries are publicly available via a Wiki, a web service, and several client applications (Szugat et al., 2005). In Chapter 4, methods for the dictionary-based recognition of gene and protein names in texts and their mapping onto unique database identifiers are described. These methods make it possible to extract information from texts and to integrate text-derived information with data from other sources. Three named entity identification systems have been set up, two of them building upon the previously existing tool ProMiner (Hanisch et al., 2003). All of them have shown very good performance in the BioCreAtIvE challenges (Fundel et al., 2005a; Hanisch et al., 2005; Fundel and Zimmer, 2007). In Chapter 5, a new method for relation extraction (Fundel et al., 2007) is presented. It was applied on the largest collection of biomedical literature abstracts, and thus a comprehensive network of human gene and protein relations has been generated. A classification approach (Küffner et al., 2006) can be used to specify relation types further; e. g., as activating, direct physical, or gene regulatory relation. Part II deals with gene expression data analysis: Gene expression data needs to be processed so that differentially expressed genes can be identified. Gene expression data processing consists of several sequential steps. Two important steps are normalization, which aims at removing systematic variances between measurements, and quantification of differential expression by p-value and fold change determination. Numerous methods exist for these tasks. Chapter 6 describes the relevant background of gene expression data analysis; it presents the biological and technical principles of microarrays and gives an overview of the most relevant data processing steps. Finally, it provides a short introduction to osteoarthritis, which is in the focus of the analyzed gene expression data sets. In Chapter 7, quality criteria for the selection of normalization methods are described, and a method for the identification of differentially expressed genes is proposed, which is appropriate for data with large intensity variances between spots representing the same gene (Fundel et al., 2005b). Furthermore, a system is described that selects an appropriate combination of feature selection method and classifier, and thus identifies genes which lead to good classification results and show consistent behavior in different sample subgroups (Davis et al., 2006). The analysis of several gene expression data sets dealing with osteoarthritis is described in Chapter 8. This chapter contains the biomedical analysis of relevant disease processes and distinct disease stages (Aigner et al., 2006a), and a comparison of various microarray platforms and osteoarthritis models. Part III deals with integrated approaches and thus provides the connection between parts I and II: Chapter 9 gives an overview of different types of integrated data analysis approaches, with a focus on approaches that integrate gene expression data with manually compiled data, large-scale networks, or text mining. In Chapter 10, a method for the identification of genes which are consistently regulated and have a coherent literature background (Küffner et al., 2005) is described. This method indicates how gene and protein name identification and gene expression data can be integrated to return clusters which contain genes that are relevant for the respective experiment together with literature information that supports interpretation. Finally, in Chapter 11 ideas on how the described methods can contribute to current research and possible future directions are presented

    Overview of BioCreative II gene normalization

    Get PDF
    Background: The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%. Results: Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system outputs using simple voting schemes and classifiers obtained improved results; the best composite system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23), identifying 763 out of 785 identifiers. Conclusion: Major advances for the BioCreative II gene normalization task include broader participation (20 versus 8 teams) and a pooled system performance comparable to human experts, at over 90% agreement. These results show promise as tools to link the literature with biological databases

    Systematic Literature Review on Ontology-based Indonesian Question Answering System

    Get PDF
    Question-Answering (QA) systems at the intersection of natural language processing, information retrieval, and knowledge representation aim to provide efficient responses to natural language queries. These systems have seen extensive development in English and languages like Indonesian present unique challenges and opportunities. This literature review paper delves into the state of ontology-based Indonesian QA systems, highlighting critical challenges. The first challenge lies in sentence understanding, variations, and complexity. Most systems rely on syntactic analysis and struggle to grasp sentence semantics. Complex sentences, especially in Indonesian, pose difficulties in parsing, semantic interpretation, and knowledge extraction. Addressing these linguistic intricacies is pivotal for accurate responses. Secondly, template-based SPARQL query construction, commonly used in Indonesian QA systems, suffers from semantic gaps and inflexibility. Advanced techniques like semantic matching algorithms and dynamic template generation can bridge these gaps and adapt to evolving ontologies. Thirdly, lexical gaps and ambiguity hinder QA systems. Bridging vocabulary mismatches between user queries and ontology labels remains a challenge. Strategies like synonym expansion, word embedding, and ontology enrichment must be explored further to overcome these challenges. Lastly, the review discusses the potential of developing multi-domain ontologies to broaden the knowledge coverage of QA systems. While this presents complex linguistic and ontological challenges, it offers the advantage of responding to various user queries across various domains. This literature review identifies crucial challenges in developing ontology-based Indonesian QA systems and suggests innovative approaches to address these challenges
    corecore