7,623 research outputs found

    A behavioral comparison of male and female adults with high functioning autism spectrum conditions

    Get PDF
    Autism spectrum conditions (ASC) affect more males than females in the general population. However, within ASC it is unclear if there are phenotypic sex differences. Testing for similarities and differences between the sexes is important not only for clinical assessment but also has implications for theories of typical sex differences and of autism. Using cognitive and behavioral measures, we investigated similarities and differences between the sexes in age- and IQ-matched adults with ASC (high-functioning autism or Asperger syndrome). Of the 83 (45 males and 38 females) participants, 62 (33 males and 29 females) met Autism Diagnostic Interview-Revised (ADI-R) cut-off criteria for autism in childhood and were included in all subsequent analyses. The severity of childhood core autism symptoms did not differ between the sexes. Males and females also did not differ in self-reported empathy, systemizing, anxiety, depression, and obsessive-compulsive traits/symptoms or mentalizing performance. However, adult females with ASC showed more lifetime sensory symptoms (p = 0.036), fewer current socio-communication difficulties (p = 0.001), and more self-reported autistic traits (p = 0.012) than males. In addition, females with ASC who also had developmental language delay had lower current performance IQ than those without developmental language delay (p<0.001), a pattern not seen in males. The absence of typical sex differences in empathizing-systemizing profiles within the autism spectrum confirms a prediction from the extreme male brain theory. Behavioral sex differences within ASC may also reflect different developmental mechanisms between males and females with ASC. We discuss the importance of the superficially better socio-communication ability in adult females with ASC in terms of why females with ASC may more often go under-recognized, and receive their diagnosis later, than males

    Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression

    Get PDF
    To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis between individual time courses of Fourier-ICA components and musical features. We found that (1) three components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, were involved in music processing among most healthy subjects; and that (2) one alpha lateral component located in the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed the statistical group comparison, and we found that: (1) the alpha lateral component was activated more strongly in healthy subjects than in the MDD individuals, and that (2) the derived frequency-dependent networks of musical feature processing seemed to be altered in MDD participants compared to healthy subjects. The proposed pipeline appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms.Peer reviewe

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    Ecologically valid long-term mood monitoring of individuals with bipolar disorder using speech

    Get PDF
    ABSTRACT Speech patterns are modulated by the emotional and neurophysiological state of the speaker. There exists a growing body of work that computationally examines this modulation in patients suffering from depression, autism, and post-traumatic stress disorder. However, the majority of the work in this area focuses on the analysis of structured speech collected in controlled environments. Here we expand on the existing literature by examining bipolar disorder (BP). BP is characterized by mood transitions, varying from a healthy euthymic state to states characterized by mania or depression. The speech patterns associated with these mood states provide a unique opportunity to study the modulations characteristic of mood variation. We describe methodology to collect unstructured speech continuously and unobtrusively via the recording of day-to-day cellular phone conversations. Our pilot investigation suggests that manic and depressive mood states can be recognized from this speech data, providing new insight into the feasibility of unobtrusive, unstructured, and continuous speech-based wellness monitoring for individuals with BP

    Artificial Intelligence for Suicide Assessment using Audiovisual Cues: A Review

    Get PDF
    Death by suicide is the seventh leading death cause worldwide. The recent advancement in Artificial Intelligence (AI), specifically AI applications in image and voice processing, has created a promising opportunity to revolutionize suicide risk assessment. Subsequently, we have witnessed fast-growing literature of research that applies AI to extract audiovisual non-verbal cues for mental illness assessment. However, the majority of the recent works focus on depression, despite the evident difference between depression symptoms and suicidal behavior and non-verbal cues. This paper reviews recent works that study suicide ideation and suicide behavior detection through audiovisual feature analysis, mainly suicidal voice/speech acoustic features analysis and suicidal visual cues. Automatic suicide assessment is a promising research direction that is still in the early stages. Accordingly, there is a lack of large datasets that can be used to train machine learning and deep learning models proven to be effective in other, similar tasks.Comment: Manuscript submitted to Arificial Intelligence Reviews (2022

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the newborn to the adult and elderly. Over the years the initial issues have grown and spread also in other fields of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years in Firenze, Italy. This edition celebrates twenty-two years of uninterrupted and successful research in the field of voice analysis

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Schizophrenia Spectrum Disorders: Linking Motor and Process Skills, Sensory Patterns, and Psychiatric Symptoms

    Get PDF
    Background: Consistent evidence suggests sensory abnormalities and skill deficits in people with Schizophrenia Spectrum Disorder (SSD). Further exploration of their sensory patterns and performance skills is warranted to promote community participation among these individuals. Method: This study examined sensory patterns and motor and process skills in relationship to psychiatric symptoms in adult patients with SSD. Participants were evaluated using the Adolescent/Adult Sensory Profile, the Assessment of Motor and Process Skills, and the Brief Psychiatric Rating Scale. Results: Of the 18 participants, the majority showed sensory differences, deficits in motor and process skills, and the presence of moderate to severe symptoms. There were significant relationships between sensory differences, skill deficits, and psychiatric symptoms. These findings are preliminary because of a small sample. Conclusion: Sensory patterns and performance skills of individuals with SSD should be routinely evaluated to address their impact on function. Future research regarding this topic requires larger samples
    • …
    corecore