1,693 research outputs found

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    A Comprehensive Analysis of Swarming-based Live Streaming to Leverage Client Heterogeneity

    Full text link
    Due to missing IP multicast support on an Internet scale, over-the-top media streams are delivered with the help of overlays as used by content delivery networks and their peer-to-peer (P2P) extensions. In this context, mesh/pull-based swarming plays an important role either as pure streaming approach or in combination with tree/push mechanisms. However, the impact of realistic client populations with heterogeneous resources is not yet fully understood. In this technical report, we contribute to closing this gap by mathematically analysing the most basic scheduling mechanisms latest deadline first (LDF) and earliest deadline first (EDF) in a continuous time Markov chain framework and combining them into a simple, yet powerful, mixed strategy to leverage inherent differences in client resources. The main contributions are twofold: (1) a mathematical framework for swarming on random graphs is proposed with a focus on LDF and EDF strategies in heterogeneous scenarios; (2) a mixed strategy, named SchedMix, is proposed that leverages peer heterogeneity. The proposed strategy, SchedMix is shown to outperform the other two strategies using different abstractions: a mean-field theoretic analysis of buffer probabilities, simulations of a stochastic model on random graphs, and a full-stack implementation of a P2P streaming system.Comment: Technical report and supplementary material to http://ieeexplore.ieee.org/document/7497234

    Experimental comparison of neighborhood filtering strategies in unstructured P2P-TV systems

    Get PDF
    P2P-TV systems performance are driven by the overlay topology that peers form. Several proposals have been made in the past to optimize it, yet little experimental studies have corroborated results. The aim of this work is to provide a comprehensive experimental comparison of different strategies for the construction and maintenance of the overlay topology in P2P-TV systems. To this goal, we have implemented different fully-distributed strategies in a P2P-TV application, called Peer- Streamer, that we use to run extensive experimental campaigns in a completely controlled set-up which involves thousands of peers, spanning very different networking scenarios. Results show that the topological properties of the overlay have a deep impact on both user quality of experience and network load. Strategies based solely on random peer selection are greatly outperformed by smart, yet simple strategies that can be implemented with negligible overhead. Even with different and complex scenarios, the neighborhood filtering strategy we devised as most perform- ing guarantees to deliver almost all chunks to all peers with a play-out delay as low as only 6s even with system loads close to 1.0. Results are confirmed by running experiments on PlanetLab. PeerStreamer is open-source to make results reproducible and allow further research by the communit

    On dynamic server provisioning in multichannel P2P live streaming

    Get PDF
    To guarantee the streaming quality in live peer-to-peer (P2P) streaming channels, it is preferable to provision adequate levels of upload capacities at dedicated streaming servers, compensating for peer instability and time-varying peer upload bandwidth availability. Most commercial P2P streaming systems have resorted to the practice of overprovisioning a fixed amount of upload capacity on streaming servers. In this paper, we have performed a detailed analysis on 10 months of run-time traces from UUSee, a commercial P2P streaming system, and observed that available server capacities are not able to keep up with the increasing demand by hundreds of channels. We propose a novel online server capacity provisioning algorithm that proactively adjusts server capacities available to each of the concurrent channels, such that the supply of server bandwidth in each channel dynamically adapts to the forecasted demand, taking into account the number of peers, the streaming quality, and the channel priority. The algorithm is able to learn over time, has full Internet service provider (ISP) awareness to maximally constrain P2P traffic within ISP boundaries, and can provide differentiated streaming qualities to different channels by manipulating their priorities. To evaluate its effectiveness, our experiments are based on an implementation of the algorithm, which replays real-world traces. © 2011 IEEE.published_or_final_versio

    On the Stability of Distribution Topologies in Peer-to-Peer Live Streaming Systems

    Get PDF
    Peer-to-Peer Live-Streaming-Systeme sind ständigen Störungen ausgesetzt.Insbesondere ermöglichen unzuverlässige Teilnehmer Ausfälle und Angriffe, welche überraschend Peers aus dem System entfernen. Die Folgen solcher Vorfälle werden großteils von der Verteilungstopologie bestimmt, d.h. der Kommunikationsstruktur zwischen den Peers.In dieser Arbeit analysieren wir Optimierungsprobleme welche bei der Betrachtung von Stabilitätsbegriffen für solche Verteilungstopologien auftreten. Dabei werden sowohl Angriffe als auch unkoordinierte Ausfälle berücksichtigt.Zunächst untersuchen wir die Berechnungskomplexität und Approximierbarkeit des Problems resourcen-effiziente Angriffe zu bestimmen. Dies demonstriert Beschränkungen in den Planungsmöglichkeiten von Angreifern und zeigt inwieweit die Topologieparameter die Schwierigkeit solcher Angriffsrobleme beeinflussen. Anschließend studieren wir Topologieformationsprobleme. Dabei sind Topologieparameter vorgegeben und es muss eine passende Verteilungstopologie gefunden werden. Ziel ist es Topologien zu erzeugen, welche den durch Angriffe mit beliebigen Parametern erzeugbaren maximalen Schaden minimieren.Wir identifizieren notwendige und hinreichende Eigenschaften solcher Verteilungstopologien. Dies führt zu mathematisch fundierten Zielstellungen für das Topologie-Management von Peer-to-Peer Live-Streaming-Systemen.Wir zeigen zwei große Klassen effizient konstruierbarer Verteilungstopologien, welche den maximal möglichen, durch Angriffe verursachten Paketverlust minimieren. Zusätzlich beweisen wir, dass die Bestimmung dieser Eigenschaft für beliebige Topologien coNP-vollständig ist.Soll die maximale Anzahl von Peers minimiert werden, bei denen ein Angriff zu ungenügender Stream-Qualität führt, ändern sich die Anforderungen an Verteilungstopologien. Wir zeigen, dass dieses Topologieformationsproblem eng mit offenen Problemen aus Design- und Kodierungstheorie verwandt ist.Schließlich analysieren wir Verteilungstopologien die den durch unkoordinierte Ausfälle zu erwartetenden Paketverlust minimieren. Wir zeigen Eigenschaften und Existenzbedingungen. Außerdem bestimmen wir die Berechnungskomplexität des Auffindens solcher Topologien. Unsere Ergebnisse liefern Richtlinien für das Topologie-Management von Peer-to-Peer Live-Streaming-Systemen und zeigen auf, welche Stabilitätsziele effizient erreicht werden können.The stability of peer-to-peer live streaming systems is constantly challenged. Especially, the unreliability and vulnerability of their participants allows for failures and attacks suddenly disabling certain sets of peers. The consequences of such events are largely determined by the distribution topology, i.e., the pattern of communication between the peers.In this thesis, we analyze a broad range of optimization problems concerning the stability of distribution topologies. For this, we discuss notions of stability against both attacks and failures.At first, we investigate the computational complexity and approximability of finding resource-efficient attacks. This allows to point out limitations of an attacker's planning capabilities and demonstrates the influence of the chosen system parameters on the hardness of such attack problems.Then, we turn to study topology formation problems. Here, a set of topology parameters is given and the task consists in finding an eligible distribution topology. In particular, it has to minimize the maximum damage achievable by attacks with arbitrary attack parameters.We identify necessary and sufficient conditions on attack-stable distribution topologies. Thereby, we give mathematically sound guidelines for the topology management of peer-to-peer live streaming systems.We find large classes of efficiently-constructable topologies minimizing the system-wide packet loss under attacks. Additionally, we show that determining this feature for arbitrary topologies is coNP-complete.Considering topologies minimizing the maximum number of peers for which an attack leads to a heavy decrease in perceived streaming quality, the requirements change. Here, we show that the corresponding topology formation problem is closely related to long-standing open problems of Design and Coding Theory.Finally, we study topologies minimizing the expected packet loss due to uncoordinated peer failures. We investigate properties and existence conditions of such topologies. Furthermore, we determine the computational complexity of constructing them.Our results provide guidelines for the topology management of peer-to-peer live streaming systems and mathematically determine which goals can be achieved efficiently

    Liquid stream processing on the web: a JavaScript framework

    Get PDF
    The Web is rapidly becoming a mature platform to host distributed applications. Pervasive computing application running on the Web are now common in the era of the Web of Things, which has made it increasingly simple to integrate sensors and microcontrollers in our everyday life. Such devices are of great in- terest to Makers with basic Web development skills. With them, Makers are able to build small smart stream processing applications with sensors and actuators without spending a fortune and without knowing much about the technologies they use. Thanks to ongoing Web technology trends enabling real-time peer-to- peer communication between Web-enabled devices, Web browsers and server- side JavaScript runtimes, developers are able to implement pervasive Web ap- plications using a single programming language. These can take advantage of direct and continuous communication channels going beyond what was possible in the early stages of the Web to push data in real-time. Despite these recent advances, building stream processing applications on the Web of Things remains a challenging task. On the one hand, Web-enabled devices of different nature still have to communicate with different protocols. On the other hand, dealing with a dynamic, heterogeneous, and volatile environment like the Web requires developers to face issues like disconnections, unpredictable workload fluctuations, and device overload. To help developers deal with such issues, in this dissertation we present the Web Liquid Streams (WLS) framework, a novel streaming framework for JavaScript. Developers implement streaming operators written in JavaScript and may interactively and dynamically define a streaming topology. The framework takes care of deploying the user-defined operators on the available devices and connecting them using the appropriate data channel, removing the burden of dealing with different deployment environments from the developers. Changes in the semantic of the application and in its execution environment may be ap- plied at runtime without stopping the stream flow. Like a liquid adapts its shape to the one of its container, the Web Liquid Streams framework makes streaming topologies flow across multiple heterogeneous devices, enabling dynamic operator migration without disrupting the data flow. By constantly monitoring the execution of the topology with a hierarchical controller infrastructure, WLS takes care of parallelising the operator execution across multiple devices in case of bottlenecks and of recovering the execution of the streaming topology in case one or more devices disconnect, by restarting lost operators on other available devices

    Scalable service for flexible access to personal content

    Get PDF
    corecore