78 research outputs found

    Finite-time stability results for fractional damped dynamical systems with time delays

    Get PDF
    This paper is explored with the stability procedure for linear nonautonomous multiterm fractional damped systems involving time delay. Finite-time stability (FTS) criteria have been developed based on the extended form of Gronwall inequality. Also, the result is deduced to a linear autonomous case. Two examples of applications of stability analysis in numerical formulation are described showing the expertise of theoretical prediction

    Robust finite-time stability of uncertain neutral nonhomogeneous fractional-order systems with time-varying delays

    Get PDF
    This article addresses the problem of finite-time stability for uncertain neutral nonhomogeneous fractional-order systems with time-varying delays where a stability test procedure is suggested. Based on the extended form of the generalized Gronwall inequality, a new sufficient condition for robust finite-time stability of such systems is established. Finally, a numerical example is given to show the effectiveness of the obtained result

    Robust finite-time stability of uncertain neutral nonhomogeneous fractional-order systems with time-varying delays

    Get PDF
    This article addresses the problem of finite-time stability for uncertain neutral nonhomogeneous fractional-order systems with time-varying delays where a stability test procedure is suggested. Based on the extended form of the generalized Gronwall inequality, a new sufficient condition for robust finite-time stability of such systems is established. Finally, a numerical example is given to show the effectiveness of the obtained result

    Mathematical Economics

    Get PDF
    This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus

    Fractional Calculus - Theory and Applications

    Get PDF
    In recent years, fractional calculus has led to tremendous progress in various areas of science and mathematics. New definitions of fractional derivatives and integrals have been uncovered, extending their classical definitions in various ways. Moreover, rigorous analysis of the functional properties of these new definitions has been an active area of research in mathematical analysis. Systems considering differential equations with fractional-order operators have been investigated thoroughly from analytical and numerical points of view, and potential applications have been proposed for use in sciences and in technology. The purpose of this Special Issue is to serve as a specialized forum for the dissemination of recent progress in the theory of fractional calculus and its potential applications

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe
    corecore