1,103 research outputs found

    Protection of Water Distribution Networks against Cyber and Physical Threats: The STOP-IT Approach Demonstrated in a Case Study

    Get PDF
    Water critical infrastructures are undergoing a process of digital transformation that entails an increasing integration between the physical and cyber layers of the system. This integration brings efficiency and monitoring advantages, but it also exposes water systems to a new threat surface that includes cyberattacks. Formed in 2017, STOP-IT is Europe’s first project dedicated to developing cyber-physical security solutions tailored to the water sector. During the 4 years of collaboration, the STOP-IT team has codeveloped an extensive list of technologies that integrates cyber and physical layers of infrastructure, allowing water utilities to prevent, detect, assess, and treat risks, as well as simulate scenarios of attacks and explore how to react to increase preparedness. This article first introduces the overall aim and main outcomes of the STOP-IT project and then focuses on the risk management integrated framework composed of modeling solutions developed to help water utilities identify vulnerabilities and protect critical parts of their systems. The solutions are presented along with the results from the demonstration activities performed by a selected water utility concerning three risk scenarios that were assessed through the mentioned integrated framework.publishedVersio

    Lean manual assembly 4.0: A systematic review

    Get PDF
    In a demand context of mass customization, shifting towards the mass personalization of products, assembly operations face the trade-off between highly productive automated systems and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest the possibility of simultaneously achieving superior productivity and flexibility. This article aims to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of assembly operations. A systematic literature review was carried out, including 234 peer-reviewed articles from 2010–2020. As a result, the analysis was structured addressing four sets of research questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation; (3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0 for people in assembly operations. It was found that mass customization brings great complexity that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting point for implementing such changes; and that people need to be considered central to Assembly 4.0. Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains an open research topic

    Regionalized implementation strategy of smart automation within assembly systems in China

    Get PDF
    Produzierende Unternehmen in aufstrebenden Nationen wie China, sind bestrebt, die Produktivität der Produktion durch eine Verbesserung der Lean Produktion mit disruptiven Technologien zu erreichen. Smart Automation ist dabei eine vielversprechende Lösung, allerdings können Unternehmen aufgrund von mangelnden Ressourcen oft nicht alle Smart Automation Technologien gleichzeitig implementieren. Ebenso beeinflusst eine Vielzahl an Einflussfaktoren, wie z.B. Standortfaktoren. Dementsprechend herausfordernd ist die Auswahl und Priorisierung von Smart Automation Technologien in Form von Einführungsstrategien für produzierende Unternehmen. Der Stand der Forschung untersucht nur unzureichend die Analyse der Interdependenzen zwischen Standortfaktoren, Smart Automation Technologien und Key Performance Indikatoren (KPIs). Darüber hinaus mangelt es an einer Methode zur Ableitung der Einführungsstrategie von Smart Automation Technologien unter Berücksichtigung dieser Interdependenzen. Entsprechend trägt diese Arbeit dazu bei, eine regionalisierte Einführungsstrategie von Smart Automation Technologien in Montagesystemen zu ermöglichen. Zunächst werden die Standortfaktoren, Smart Automation Technologien und KPIs identifiziert. In einem zweiten Schritt werden, mit Hilfe von qualitativen und quantitativen Analysen, die Interdependenzen bestimmt. Anschließend werden diese Interdependenzen auf ein Montagesystem mittels hybrider Modellierung und Simulation übertragen. Im vierten Schritt wird eine regionalisierte Einführungsstrategie durch eine Optimierung und eine Monte-Carlo-Simulation abgeleitet. Die Methodik wurde im Rahmen des deutsch-chinesischen Forschungsprojekts I4TP entwickelt, das vom Bundesministerium für Bildung und Forschung (BMBF) unterstützt wird. Die Validierung wurde erfolgreich mit einem produzierenden Unternehmen in Beijing durchgeführt. Die entwickelte Methodik stellt einen neuartigen Ansatz zur Entscheidungsunterstützung bei der Entwicklung einer regionalisierten Einführungsstrategie für Smart Automation Technologien in Montagesystemen dar. Dadurch sind produzierende Unter-nehmen in der Lage, individuelle Einführungsstrategien für disruptive Technologien auf Basis wissenschaftlicher und rationaler Analysen effektiv abzuleiten

    Gamification Analytics: Support for Monitoring and Adapting Gamification Designs

    Get PDF
    Inspired by the engaging effects in video games, gamification aims at motivating people to show desired behaviors in a variety of contexts. During the last years, gamification influenced the design of many software applications in the consumer as well as enterprise domain. In some cases, even whole businesses, such as Foursquare, owe their success to well-designed gamification mechanisms in their product. Gamification also attracted the interest of academics from fields, such as human-computer interaction, marketing, psychology, and software engineering. Scientific contributions comprise psychological theories and models to better understand the mechanisms behind successful gamification, case studies that measure the psychological and behavioral outcomes of gamification, methodologies for gamification projects, and technical concepts for platforms that support implementing gamification in an efficient manner. Given a new project, gamification experts can leverage the existing body of knowledge to reuse previous, or derive new gamification ideas. However, there is no one size fits all approach for creating engaging gamification designs. Gamification success always depends on a wide variety of factors defined by the characteristics of the audience, the gamified application, and the chosen gamification design. In contrast to researchers, gamification experts in the industry rarely have the necessary skills and resources to assess the success of their gamification design systematically. Therefore, it is essential to provide them with suitable support mechanisms, which help to assess and improve gamification designs continuously. Providing suitable and efficient gamification analytics support is the ultimate goal of this thesis. This work presents a study with gamification experts that identifies relevant requirements in the context of gamification analytics. Given the identified requirements and earlier work in the analytics domain, this thesis then derives a set of gamification analytics-related activities and uses them to extend an existing process model for gamification projects. The resulting model can be used by experts to plan and execute their gamification projects with analytics in mind. Next, this work identifies existing tools and assesses them with regards to their applicability in gamification projects. The results can help experts to make objective technology decisions. However, they also show that most tools have significant gaps towards the identified user requirements. Consequently, a technical concept for a suitable realization of gamification analytics is derived. It describes a loosely coupled analytics service that helps gamification experts to seamlessly collect and analyze gamification-related data while minimizing dependencies to IT experts. The concept is evaluated successfully via the implementation of a prototype and application in two real-world gamification projects. The results show that the presented gamification analytics concept is technically feasible, applicable to actual projects, and also valuable for the systematic monitoring of gamification success
    corecore