444 research outputs found

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Tripartite Graph Clustering for Dynamic Sentiment Analysis on Social Media

    Full text link
    The growing popularity of social media (e.g, Twitter) allows users to easily share information with each other and influence others by expressing their own sentiments on various subjects. In this work, we propose an unsupervised \emph{tri-clustering} framework, which analyzes both user-level and tweet-level sentiments through co-clustering of a tripartite graph. A compelling feature of the proposed framework is that the quality of sentiment clustering of tweets, users, and features can be mutually improved by joint clustering. We further investigate the evolution of user-level sentiments and latent feature vectors in an online framework and devise an efficient online algorithm to sequentially update the clustering of tweets, users and features with newly arrived data. The online framework not only provides better quality of both dynamic user-level and tweet-level sentiment analysis, but also improves the computational and storage efficiency. We verified the effectiveness and efficiency of the proposed approaches on the November 2012 California ballot Twitter data.Comment: A short version is in Proceeding of the 2014 ACM SIGMOD International Conference on Management of dat

    Feature-rich networks: going beyond complex network topologies.

    Get PDF
    Abstract The growing availability of multirelational data gives rise to an opportunity for novel characterization of complex real-world relations, supporting the proliferation of diverse network models such as Attributed Graphs, Heterogeneous Networks, Multilayer Networks, Temporal Networks, Location-aware Networks, Knowledge Networks, Probabilistic Networks, and many other task-driven and data-driven models. In this paper, we propose an overview of these models and their main applications, described under the common denomination of Feature-rich Networks, i. e. models where the expressive power of the network topology is enhanced by exposing one or more peculiar features. The aim is also to sketch a scenario that can inspire the design of novel feature-rich network models, which in turn can support innovative methods able to exploit the full potential of mining complex network structures in domain-specific applications

    JNET: Learning User Representations via Joint Network Embedding and Topic Embedding

    Full text link
    User representation learning is vital to capture diverse user preferences, while it is also challenging as user intents are latent and scattered among complex and different modalities of user-generated data, thus, not directly measurable. Inspired by the concept of user schema in social psychology, we take a new perspective to perform user representation learning by constructing a shared latent space to capture the dependency among different modalities of user-generated data. Both users and topics are embedded to the same space to encode users' social connections and text content, to facilitate joint modeling of different modalities, via a probabilistic generative framework. We evaluated the proposed solution on large collections of Yelp reviews and StackOverflow discussion posts, with their associated network structures. The proposed model outperformed several state-of-the-art topic modeling based user models with better predictive power in unseen documents, and state-of-the-art network embedding based user models with improved link prediction quality in unseen nodes. The learnt user representations are also proved to be useful in content recommendation, e.g., expert finding in StackOverflow

    Combating User Misbehavior on Social Media

    Get PDF
    Social media encourages user participation and facilitates user’s self-expression like never before. While enriching user behavior in a spectrum of means, many social media platforms have become breeding grounds for user misbehavior. In this dissertation we focus on understanding and combating three specific threads of user misbehaviors that widely exist on social media — spamming, manipulation, and distortion. First, we address the challenge of detecting spam links. Rather than rely on traditional blacklist-based or content-based methods, we examine the behavioral factors of both who is posting the link and who is clicking on the link. The core intuition is that these behavioral signals may be more difficult to manipulate than traditional signals. We find that this purely behavioral approach can achieve good performance for robust behavior-based spam link detection. Next, we deal with uncovering manipulated behavior of link sharing. We propose a four-phase approach to model, identify, characterize, and classify organic and organized groups who engage in link sharing. The key motivating insight is that group-level behavioral signals can distinguish manipulated user groups. We find that levels of organized behavior vary by link type and that the proposed approach achieves good performance measured by commonly-used metrics. Finally, we investigate a particular distortion behavior: making bullshit (BS) statements on social media. We explore the factors impacting the perception of BS and what leads users to ultimately perceive and call a post BS. We begin by preparing a crowdsourced collection of real social media posts that have been called BS. We then build a classification model that can determine what posts are more likely to be called BS. Our experiments suggest our classifier has the potential of leveraging linguistic cues for detecting social media posts that are likely to be called BS. We complement these three studies with a cross-cutting investigation of learning user topical profiles, which can shed light into what subjects each user is associated with, which can benefit the understanding of the connection between user and misbehavior. Concretely, we propose a unified model for learning user topical profiles that simultaneously considers multiple footprints and we show how these footprints can be embedded in a generalized optimization framework. Through extensive experiments on millions of real social media posts, we find our proposed models can effectively combat user misbehavior on social media

    The role of geographic knowledge in sub-city level geolocation algorithms

    Get PDF
    Geolocation of microblog messages has been largely investigated in the lit- erature. Many solutions have been proposed that achieve good results at the city-level. Existing approaches are mainly data-driven (i.e., they rely on a training phase). However, the development of algorithms for geolocation at sub-city level is still an open problem also due to the absence of good training datasets. In this thesis, we investigate the role that external geographic know- ledge can play in geolocation approaches. We show how di)erent geographical data sources can be combined with a semantic layer to achieve reasonably accurate sub-city level geolocation. Moreover, we propose a knowledge-based method, called Sherloc, to accurately geolocate messages at sub-city level, by exploiting the presence in the message of toponyms possibly referring to the speci*c places in the target geographical area. Sherloc exploits the semantics associated with toponyms contained in gazetteers and embeds them into a metric space that captures the semantic distance among them. This allows toponyms to be represented as points and indexed by a spatial access method, allowing us to identify the semantically closest terms to a microblog message, that also form a cluster with respect to their spatial locations. In contrast to state-of-the-art methods, Sherloc requires no prior training, it is not limited to geolocating on a *xed spatial grid and it experimentally demonstrated its ability to infer the location at sub-city level with higher accuracy

    Combating User Misbehavior on Social Media

    Get PDF
    Social media encourages user participation and facilitates user’s self-expression like never before. While enriching user behavior in a spectrum of means, many social media platforms have become breeding grounds for user misbehavior. In this dissertation we focus on understanding and combating three specific threads of user misbehaviors that widely exist on social media — spamming, manipulation, and distortion. First, we address the challenge of detecting spam links. Rather than rely on traditional blacklist-based or content-based methods, we examine the behavioral factors of both who is posting the link and who is clicking on the link. The core intuition is that these behavioral signals may be more difficult to manipulate than traditional signals. We find that this purely behavioral approach can achieve good performance for robust behavior-based spam link detection. Next, we deal with uncovering manipulated behavior of link sharing. We propose a four-phase approach to model, identify, characterize, and classify organic and organized groups who engage in link sharing. The key motivating insight is that group-level behavioral signals can distinguish manipulated user groups. We find that levels of organized behavior vary by link type and that the proposed approach achieves good performance measured by commonly-used metrics. Finally, we investigate a particular distortion behavior: making bullshit (BS) statements on social media. We explore the factors impacting the perception of BS and what leads users to ultimately perceive and call a post BS. We begin by preparing a crowdsourced collection of real social media posts that have been called BS. We then build a classification model that can determine what posts are more likely to be called BS. Our experiments suggest our classifier has the potential of leveraging linguistic cues for detecting social media posts that are likely to be called BS. We complement these three studies with a cross-cutting investigation of learning user topical profiles, which can shed light into what subjects each user is associated with, which can benefit the understanding of the connection between user and misbehavior. Concretely, we propose a unified model for learning user topical profiles that simultaneously considers multiple footprints and we show how these footprints can be embedded in a generalized optimization framework. Through extensive experiments on millions of real social media posts, we find our proposed models can effectively combat user misbehavior on social media
    • …
    corecore