18,663 research outputs found

    Scalable visualisation methods for modern Generalized Additive Models

    Full text link
    In the last two decades the growth of computational resources has made it possible to handle Generalized Additive Models (GAMs) that formerly were too costly for serious applications. However, the growth in model complexity has not been matched by improved visualisations for model development and results presentation. Motivated by an industrial application in electricity load forecasting, we identify the areas where the lack of modern visualisation tools for GAMs is particularly severe, and we address the shortcomings of existing methods by proposing a set of visual tools that a) are fast enough for interactive use, b) exploit the additive structure of GAMs, c) scale to large data sets and d) can be used in conjunction with a wide range of response distributions. All the new visual methods proposed in this work are implemented by the mgcViz R package, which can be found on the Comprehensive R Archive Network

    Dynamical projections for the visualization of PDFSense data

    Full text link
    A recent paper on visualizing the sensitivity of hadronic experiments to nucleon structure [1] introduces the tool PDFSense which defines measures to allow the user to judge the sensitivity of PDF fits to a given experiment. The sensitivity is characterized by high-dimensional data residuals that are visualized in a 3-d subspace of the 10 first principal components or using t-SNE [2]. We show how a tour, a dynamic visualisation of high dimensional data, can extend this tool beyond 3-d relationships. This approach enables resolving structure orthogonal to the 2-d viewing plane used so far, and hence finer tuned assessment of the sensitivity.Comment: Format of the animations changed for easier viewin

    From Keyword Search to Exploration: How Result Visualization Aids Discovery on the Web

    No full text
    A key to the Web's success is the power of search. The elegant way in which search results are returned is usually remarkably effective. However, for exploratory search in which users need to learn, discover, and understand novel or complex topics, there is substantial room for improvement. Human computer interaction researchers and web browser designers have developed novel strategies to improve Web search by enabling users to conveniently visualize, manipulate, and organize their Web search results. This monograph offers fresh ways to think about search-related cognitive processes and describes innovative design approaches to browsers and related tools. For instance, while key word search presents users with results for specific information (e.g., what is the capitol of Peru), other methods may let users see and explore the contexts of their requests for information (related or previous work, conflicting information), or the properties that associate groups of information assets (group legal decisions by lead attorney). We also consider the both traditional and novel ways in which these strategies have been evaluated. From our review of cognitive processes, browser design, and evaluations, we reflect on the future opportunities and new paradigms for exploring and interacting with Web search results

    Coordinating views for data visualisation and algorithmic profiling

    Get PDF
    A number of researchers have designed visualisation systems that consist of multiple components, through which data and interaction commands flow. Such multistage (hybrid) models can be used to reduce algorithmic complexity, and to open up intermediate stages of algorithms for inspection and steering. In this paper, we present work on aiding the developer and the user of such algorithms through the application of interactive visualisation techniques. We present a set of tools designed to profile the performance of other visualisation components, and provide further functionality for the exploration of high dimensional data sets. Case studies are provided, illustrating the application of the profiling modules to a number of data sets. Through this work we are exploring ways in which techniques traditionally used to prepare for visualisation runs, and to retrospectively analyse them, can find new uses within the context of a multi-component visualisation system

    Exploring population distribution and motion dynamics through mobile phone device data in selected cities – lessons learned from the UrbanAPI project

    Get PDF
    The paper discusses experiences of development and implementation of public motion explorer (PME) tool as part of the EU FP7 project urbanAPI. This tool has been applied to three EU cities with the objective to investigate population distribution dynamics and anonymous population movement patterns within urban environments as an instrument to map shapes of urban attractiveness and accessibility and as a support for transportation and infrastructure planning. The paper describes technical details of the Motion Explorer application by demonstrating the different applications for the City of Vienna, Bologna and Vitoria-Gasteiz and it discusses the results of the first round of the user evaluation using the Criteria Indicators and Metrics methodology. The initial results indicate that the application is intuitive and highly useful for city planning and provides the evidence-based information, which is either expensive or difficult to collect using other approaches

    Two polymorphisms facilitate differences in plasticity between two chicken major histocompatibility complex class I proteins

    Get PDF
    Major histocompatibility complex class I molecules (MHC I) present peptides to cytotoxic T-cells at the surface of almost all nucleated cells. The function of MHC I molecules is to select high affinity peptides from a large intracellular pool and they are assisted in this process by co-factor molecules, notably tapasin. In contrast to mammals, MHC homozygous chickens express a single MHC I gene locus, termed BF2, which is hypothesised to have co-evolved with the highly polymorphic tapasin within stable haplotypes. The BF2 molecules of the B15 and B19 haplotypes have recently been shown to differ in their interactions with tapasin and in their peptide selection properties. This study investigated whether these observations might be explained by differences in the protein plasticity that is encoded into the MHC I structure by primary sequence polymorphisms. Furthermore, we aimed to demonstrate the utility of a complimentary modelling approach to the understanding of complex experimental data. Combining mechanistic molecular dynamics simulations and the primary sequence based technique of statistical coupling analysis, we show how two of the eight polymorphisms between BF2*15:01 and BF2*19:01 facilitate differences in plasticity. We show that BF2*15:01 is intrinsically more plastic than BF2*19:01, exploring more conformations in the absence of peptide. We identify a protein sector of contiguous residues connecting the membrane bound ?3 domain and the heavy chain peptide binding site. This sector contains two of the eight polymorphic residues. One is residue 22 in the peptide binding domain and the other 220 is in the ?3 domain, a putative tapasin binding site. These observations are in correspondence with the experimentally observed functional differences of these molecules and suggest a mechanism for how modulation of MHC I plasticity by tapasin catalyses peptide selection allosterically
    corecore