71 research outputs found

    Persistent Homology in Multivariate Data Visualization

    Get PDF
    Technological advances of recent years have changed the way research is done. When describing complex phenomena, it is now possible to measure and model a myriad of different aspects pertaining to them. This increasing number of variables, however, poses significant challenges for the visual analysis and interpretation of such multivariate data. Yet, the effective visualization of structures in multivariate data is of paramount importance for building models, forming hypotheses, and understanding intrinsic properties of the underlying phenomena. This thesis provides novel visualization techniques that advance the field of multivariate visual data analysis by helping represent and comprehend the structure of high-dimensional data. In contrast to approaches that focus on visualizing multivariate data directly or by means of their geometrical features, the methods developed in this thesis focus on their topological properties. More precisely, these methods provide structural descriptions that are driven by persistent homology, a technique from the emerging field of computational topology. Such descriptions are developed in two separate parts of this thesis. The first part deals with the qualitative visualization of topological features in multivariate data. It presents novel visualization methods that directly depict topological information, thus permitting the comparison of structural features in a qualitative manner. The techniques described in this part serve as low-dimensional representations that make the otherwise high-dimensional topological features accessible. We show how to integrate them into data analysis workflows based on clustering in order to obtain more information about the underlying data. The efficacy of such combined workflows is demonstrated by analysing complex multivariate data sets from cultural heritage and political science, for example, whose structures are hidden to common visualization techniques. The second part of this thesis is concerned with the quantitative visualization of topological features. It describes novel methods that measure different aspects of multivariate data in order to provide quantifiable information about them. Here, the topological characteristics serve as a feature descriptor. Using these descriptors, the visualization techniques in this part focus on augmenting and improving existing data analysis processes. Among others, they deal with the visualization of high-dimensional regression models, the visualization of errors in embeddings of multivariate data, as well as the assessment and visualization of the results of different clustering algorithms. All the methods presented in this thesis are evaluated and analysed on different data sets in order to show their robustness. This thesis demonstrates that the combination of geometrical and topological methods may support, complement, and surpass existing approaches for multivariate visual data analysis

    'Shall I compare thee to a network?': Visualizing the Topological Structure of Shakespeare’s Plays

    Get PDF
    Many of the plays of William Shakespeare are almost universally known and continue to be played even 400 years after his death. Although the plots of the plays are in general very different, scholars are still discussing similarities in their language, their structure, and many other aspects. In this paper, we demonstrate that visualization approaches may support such an analysis. The presence of machine-readable annotations for each of the plays permits us to construct a set of weighted networks. Every network describes co-occurrence relations between individual characters of a play; its weights may be used to indicate the importance of a connection between two characters, for instance. We subject the networks to a topology-based analysis that permits us to assess their structural similarity. Moreover, we use the dissimilarity values to obtain a topology-based embedding of all the plays. We then proceed to show how features in the dramatic structure of the play manifest themselves in the embedding. This paper is thus a first step towards a more in-depth analysis of the plays, demonstrating the benefits of topology-based visualizations for the digital humanities

    Piecewise Linear Manifold Clustering

    Full text link
    This work studies the application of topological analysis to non-linear manifold clustering. A novel method, that exploits the data clustering structure, allows to generate a topological representation of the point dataset. An analysis of topological construction under different simulated conditions is performed to explore the capabilities and limitations of the method, and demonstrated statistically significant improvements in performance. Furthermore, we introduce a new information-theoretical validation measure for clustering, that exploits geometrical properties of clusters to estimate clustering compressibility, for evaluation of the clustering goodness-of-fit without any prior information about true class assignments. We show how the new validation measure, when used as regularization criteria, allows creation of clusters that are more informative. A final contribution is a new metaclustering technique that allows to create a model-based clustering beyond point and linear shaped structures. Driven by topological structure and our information-theoretical criteria, this technique provides structured view of the data on new comprehensive and interpretation level. Improvements of our clustering approach are demonstrated on a variety of synthetic and real datasets, including image and climatological data

    Doctor of Philosophy

    Get PDF
    dissertationWith the ever-increasing amount of available computing resources and sensing devices, a wide variety of high-dimensional datasets are being produced in numerous fields. The complexity and increasing popularity of these data have led to new challenges and opportunities in visualization. Since most display devices are limited to communication through two-dimensional (2D) images, many visualization methods rely on 2D projections to express high-dimensional information. Such a reduction of dimension leads to an explosion in the number of 2D representations required to visualize high-dimensional spaces, each giving a glimpse of the high-dimensional information. As a result, one of the most important challenges in visualizing high-dimensional datasets is the automatic filtration and summarization of the large exploration space consisting of all 2D projections. In this dissertation, a new type of algorithm is introduced to reduce the exploration space that identifies a small set of projections that capture the intrinsic structure of high-dimensional data. In addition, a general framework for summarizing the structure of quality measures in the space of all linear 2D projections is presented. However, identifying the representative or informative projections is only part of the challenge. Due to the high-dimensional nature of these datasets, obtaining insights and arriving at conclusions based solely on 2D representations are limited and prone to error. How to interpret the inaccuracies and resolve the ambiguity in the 2D projections is the other half of the puzzle. This dissertation introduces projection distortion error measures and interactive manipulation schemes that allow the understanding of high-dimensional structures via data manipulation in 2D projections

    Modelling Voxel Dependent Hemodynamic Response Function

    Get PDF
    Ph. D. Thesis.An important challenge of contemporary neuroscience is the detection and understanding of significant brain activity using functional magnetic resonance imaging (fMRI). One of the many motivations of this research, related to the data set used in this thesis, is to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke. Much statistical modelling has attempted to interpret noisy fMRI data and detect changes in response to activity. However due to the large data sets usually involved in fMRI modelling, here as many as 150, 000 measurements in localised spatial volumes known as voxels at each time point, many simplifying assumptions are usually made to make computation feasible. This is known to have a negative impact on detecting voxel activation. In this work we fit a space-time model to a fMRI data set using a sequential approach to allow for scalability. However, the main contribution of this work is an alternative method to detect activation in the brain. Here we take the novel approach of using topological data analysis to investigate the model residuals to detect changes in the fMRI data. In particular we analyse the spatial distribution of topological features of the residuals to provide a test for normality, and also by providing a method to analyse how the spatial distribution of such features change over time, we are able to detect changes in the data in response to activity where conventional methods cannot. A recommendation for future work is to also investigate how topological features change for different filtration levels of the field, as this may provide new insights on brain activation

    Skeleton coupling: a novel interlayer mapping of community evolution in temporal networks

    Full text link
    Dynamic community detection (DCD) in temporal networks is a complicated task that involves the selection of an algorithm and its associated parameters. How to choose the most appropriate algorithm generally depends on the type of network being analyzed and the specific properties of the data that define the network. In functional temporal networks derived from neuronal spike train data, communities are expected to be transient, and it is common for the network to contain multiple singleton communities. Here, we compare the performance of different DCD algorithms on functional temporal networks built from synthetic neuronal time series data with known community structure. We find that, for these networks, DCD algorithms that utilize interlayer links to perform community carryover between layers outperform other methods. However, we also observe that algorithm performance is highly dependent on the topology of interlayer links, especially in the presence of singleton and transient communities. We therefore define a novel method for defining interlayer links in temporal networks called skeleton coupling that is specifically designed to enhance the linkage of communities in the network throughout time based on the topological properties of the community history. We show that integrating skeleton coupling with current DCD methods improves algorithm performance in synthetic data with planted singleton and transient communities. The use of skeleton coupling to perform DCD will therefore allow for more accurate and interpretable results of community evolution in real-world neuronal data or in other systems with transient structure and singleton communities.Comment: 19 pages, 8 figure

    Visual Analysis of Variability and Features of Climate Simulation Ensembles

    Get PDF
    This PhD thesis is concerned with the visual analysis of time-dependent scalar field ensembles as occur in climate simulations. Modern climate projections consist of multiple simulation runs (ensemble members) that vary in parameter settings and/or initial values, which leads to variations in the resulting simulation data. The goal of ensemble simulations is to sample the space of possible futures under the given climate model and provide quantitative information about uncertainty in the results. The analysis of such data is challenging because apart from the spatiotemporal data, also variability has to be analyzed and communicated. This thesis presents novel techniques to analyze climate simulation ensembles visually. A central question is how the data can be aggregated under minimized information loss. To address this question, a key technique applied in several places in this work is clustering. The first part of the thesis addresses the challenge of finding clusters in the ensemble simulation data. Various distance metrics lend themselves for the comparison of scalar fields which are explored theoretically and practically. A visual analytics interface allows the user to interactively explore and compare multiple parameter settings for the clustering and investigate the resulting clusters, i.e. prototypical climate phenomena. A central contribution here is the development of design principles for analyzing variability in decadal climate simulations, which has lead to a visualization system centered around the new Clustering Timeline. This is a variant of a Sankey diagram that utilizes clustering results to communicate climatic states over time coupled with ensemble member agreement. It can reveal several interesting properties of the dataset, such as: into how many inherently similar groups the ensemble can be divided at any given time, whether the ensemble diverges in general, whether there are different phases in the time lapse, maybe periodicity, or outliers. The Clustering Timeline is also used to compare multiple climate simulation models and assess their performance. The Hierarchical Clustering Timeline is an advanced version of the above. It introduces the concept of a cluster hierarchy that may group the whole dataset down to the individual static scalar fields into clusters of various sizes and densities recording the nesting relationship between them. One more contribution of this work in terms of visualization research is, that ways are investigated how to practically utilize a hierarchical clustering of time-dependent scalar fields to analyze the data. To this end, a system of different views is proposed which are linked through various interaction possibilities. The main advantage of the system is that a dataset can now be inspected at an arbitrary level of detail without having to recompute a clustering with different parameters. Interesting branches of the simulation can be expanded to reveal smaller differences in critical clusters or folded to show only a coarse representation of the less interesting parts of the dataset. The last building block of the suit of visual analysis methods developed for this thesis aims at a robust, (largely) automatic detection and tracking of certain features in a scalar field ensemble. Techniques are presented that I found can identify and track super- and sub-levelsets. And I derive “centers of action” from these sets which mark the location of extremal climate phenomena that govern the weather (e.g. Icelandic Low and Azores High). The thesis also presents visual and quantitative techniques to evaluate the temporal change of the positions of these centers; such a displacement would be likely to manifest in changes in weather. In a preliminary analysis with my collaborators, we indeed observed changes in the loci of the centers of action in a simulation with increased greenhouse gas concentration as compared to pre-industrial concentration levels

    Unsupervised Incremental Online Learning and Prediction of Musical Audio Signals

    Get PDF
    Guided by the idea that musical human-computer interaction may become more effective, intuitive, and creative when basing its computer part on cognitively more plausible learning principles, we employ unsupervised incremental online learning (i.e. clustering) to build a system that predicts the next event in a musical sequence, given as audio input. The flow of the system is as follows: 1) segmentation by onset detection, 2) timbre representation of each segment by Mel frequency cepstrum coefficients, 3) discretization by incremental clustering, yielding a tree of different sound classes (e.g. timbre categories/instruments) that can grow or shrink on the fly driven by the instantaneous sound events, resulting in a discrete symbol sequence, 4) extraction of statistical regularities of the symbol sequence, using hierarchical N-grams and the newly introduced conceptual Boltzmann machine that adapt to the dynamically changing clustering tree in 3) , and 5) prediction of the next sound event in the sequence, given the last n previous events. The system's robustness is assessed with respect to complexity and noisiness of the signal. Clustering in isolation yields an adjusted Rand index (ARI) of 82.7%/85.7% for data sets of singing voice and drums. Onset detection jointly with clustering achieve an ARI of 81.3%/76.3% and the prediction of the entire system yields an ARI of 27.2%/39.2%
    • …
    corecore