3,961 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Multi-Robot Remote Driving with Collaborative Control

    Get PDF

    The Immersive Education Laboratory: understanding affordances, structuring experiences, and creating constructivist, collaborative processes, in mixed-reality smart environments

    Get PDF
    In this paper we describe how the iClassroom and other technologies are providing the testbed through which we are able to design, develop, and research future intelligent environments. We describe the process of distinguishing between the technical and pedagogical aspects of immersive learning environments, while simultaneously considering both in the redefinition of effective intelligent learning spaces. This paper describes how our laboratory is working on specific projects that increase our understanding of the distinct advantages of technical design elements, like immersive visual displays, and pedagogical design elements that need to be in place as we go through the process of structuring learning situations that create constructivist, collaborative experiences. We describe specific technologies and their design across these multiple dimensions and the ways in which they are helping us better understand how to maximize technological affordances for increased positive learning outcomes. Finally, through this design research process, as we begin to better understand the affordances and iteratively create design guidelines, our hope is that eventually a prescriptive framework emerges that informs both the practice of embedded technology development and the deliberate incorporation of technical attributes into both the educational space and the pedagogy through which students learn

    Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems

    Get PDF
    Most recently, the COVID-19 pandemic has shown industries all around the world that their current manufacturing systems are not as resilient as expected and therefore many are failing. The workforce is the most agile and flexible manufacturing resource and simultaneously the most fragile one due to its humanity. By making human operators more resilient against a range of factors affecting their work and workplaces, enterprises can make their manufacturing systems more resilient. This paper introduces "The Resilient Operator 5.0" concept, based on human operator resilience and human-machine systems\u27 resilience, providing a vision for the future of work in smart resilient manufacturing systems in the emerging Industry 5.0 hallmark. It suggests how to achieve appropriate smart manufacturing systems\u27 resilience from a human-centric perspective through the means of the Operator 4.0 typology and its related technical solutions

    Human-robot Interaction For Multi-robot Systems

    Get PDF
    Designing an effective human-robot interaction paradigm is particularly important for complex tasks such as multi-robot manipulation that require the human and robot to work together in a tightly coupled fashion. Although increasing the number of robots can expand the area that the robots can cover within a bounded period of time, a poor human-robot interface will ultimately compromise the performance of the team of robots. However, introducing a human operator to the team of robots, does not automatically improve performance due to the difficulty of teleoperating mobile robots with manipulators. The human operator’s concentration is divided not only among multiple robots but also between controlling each robot’s base and arm. This complexity substantially increases the potential neglect time, since the operator’s inability to effectively attend to each robot during a critical phase of the task leads to a significant degradation in task performance. There are several proven paradigms for increasing the efficacy of human-robot interaction: 1) multimodal interfaces in which the user controls the robots using voice and gesture; 2) configurable interfaces which allow the user to create new commands by demonstrating them; 3) adaptive interfaces which reduce the operator’s workload as necessary through increasing robot autonomy. This dissertation presents an evaluation of the relative benefits of different types of user interfaces for multi-robot systems composed of robots with wheeled bases and three degree of freedom arms. It describes a design for constructing low-cost multi-robot manipulation systems from off the shelf parts. User expertise was measured along three axes (navigation, manipulation, and coordination), and participants who performed above threshold on two out of three dimensions on a calibration task were rated as expert. Our experiments reveal that the relative expertise of the user was the key determinant of the best performing interface paradigm for that user, indicating that good user modiii eling is essential for designing a human-robot interaction system that will be used for an extended period of time. The contributions of the dissertation include: 1) a model for detecting operator distraction from robot motion trajectories; 2) adjustable autonomy paradigms for reducing operator workload; 3) a method for creating coordinated multi-robot behaviors from demonstrations with a single robot; 4) a user modeling approach for identifying expert-novice differences from short teleoperation traces
    • …
    corecore