398 research outputs found

    Straight-Leg Walking Through Underconstrained Whole-Body Control

    Full text link
    We present an approach for achieving a natural, efficient gait on bipedal robots using straightened legs and toe-off. Our algorithm avoids complex height planning by allowing a whole-body controller to determine the straightest possible leg configuration at run-time. The controller solutions are biased towards a straight leg configuration by projecting leg joint angle objectives into the null-space of the other quadratic program motion objectives. To allow the legs to remain straight throughout the gait, toe-off was utilized to increase the kinematic reachability of the legs. The toe-off motion is achieved through underconstraining the foot position, allowing it to emerge naturally. We applied this approach of under-specifying the motion objectives to the Atlas humanoid, allowing it to walk over a variety of terrain. We present both experimental and simulation results and discuss performance limitations and potential improvements.Comment: Submitted to 2018 IEEE International Conference on Robotics and Automatio

    Quasi-inverse pendulum model of 12 DoF bipedal walking

    Get PDF
    This paper presents modeling of a 12-degree of freedom (DoF) bipedal robot, focusing on the lower limbs of the system, and trajectory design for walking on straight path. Gait trajectories are designed by modeling of center of mass (CoM) trajectory and swing foot ankle trajectory based on stance foot ankle. The dynamic equations of motion of the bipedal robot are derived by considering the system as a quasi inverted pendulum (QIP) model. The direction and acceleration of CoM movement of the QIP model is determined by the position of CoM relative to the centre of pressure (CoP). To determine heel-contact and toe-off, two custom designed switches are attached with heel and toe positions of each foot. Four force sensitive resistor (FSR) sensors are also placed at the plantar surface to measure pressure that is induced on each foot while walking which leads to the calculation of CoP trajectory. The paper also describes forward kinematic (FK) and inverse kinematic (IK) investigations of the biped model where Denavit-Hartenberg (D-H) representation and Geometric-Trigonometric (G-T) formulation approach are applied. Experiments are carried out to ensure the reliability of the proposed model where the links of the bipedal system follow the best possible trajectories while walking on straight path

    Input to State Stability of Bipedal Walking Robots: Application to DURUS

    Get PDF
    Bipedal robots are a prime example of systems which exhibit highly nonlinear dynamics, underactuation, and undergo complex dissipative impacts. This paper discusses methods used to overcome a wide variety of uncertainties, with the end result being stable bipedal walking. The principal contribution of this paper is to establish sufficiency conditions for yielding input to state stable (ISS) hybrid periodic orbits, i.e., stable walking gaits under model-based and phase-based uncertainties. In particular, it will be shown formally that exponential input to state stabilization (e-ISS) of the continuous dynamics, and hybrid invariance conditions are enough to realize stable walking in the 23-DOF bipedal robot DURUS. This main result will be supported through successful and sustained walking of the bipedal robot DURUS in a laboratory environment.Comment: 16 pages, 10 figure

    A Novel 3D printed leg design for a Biped Robot

    Get PDF
    This paper proposes a novel leg design for a humanoid robot that can be 3D printed. More explicitly, the efforts of this paper are to bring some of the more complex leg designs seen in large scale bipedal robot into the realm of smaller bipeds while still allowing for it to be easily reproducible or modified. In order to accomplish this 3D printing technology was utilized, as well as an iterative design process. An ankle and knee powered by linear actuators were first constructed to test the conceptual design of the leg. This was followed by a complete leg design with improved ankle and knee, along with the rest of the leg

    Bipedal Walking Analysis, Control, and Applications Towards Human-Like Behavior

    Get PDF
    Realizing the essentials of bipedal walking balance is one of the core studies in both robotics and biomechanics. Although the recent developments of walking control on bipedal robots have brought the humanoid automation to a different level, the walking performance is still limited compared to human walking, which also restricts the related applications in biomechanics and rehabilitation. To mitigate the discrepancy between robotic walking and human walking, this dissertation is broken into three parts to develop the control methods to improve three important perspectives: predictive walking behavior, gait optimization, and stepping strategy. To improve the predictive walking behavior captured by the model predictive control (MPC) which is transitionally applied with the nonlinear tracking control in sequence, a quadratic program (QP)-based controller is proposed to unify center of mass (COM) planning using MPC and a nonlinear torque control with control Lyapunov function (CLF). For the gait optimization, we focus on the algorithms of trajectory optimization with direct collocation framework. We propose a robust trajectory optimization using step-time sampling for a simple walker under terrain uncertainties. Towards generating human-like walking gait with multi-domain (phases), we improve the optimization through contact with more accurate transcription method for level walking, and generalize the hybrid zero dynamics (HZD) gait optimization with modified contact conditions for walking on various terrains. The results are compared with human walking gaits, where the similar trends and the sources of discrepancies are identified. In the third part for stepping strategy, we perform step estimation based on capture point (CP) for different human movements, including single-step (balance) recovery, walking and walking with slip. The analysis provides the insights of the efficacy and limitation of CP-based step estimation for human gait

    Exploring Kinodynamic Fabrics for Reactive Whole-Body Control of Underactuated Humanoid Robots

    Full text link
    For bipedal humanoid robots to successfully operate in the real world, they must be competent at simultaneously executing multiple motion tasks while reacting to unforeseen external disturbances in real-time. We propose Kinodynamic Fabrics as an approach for the specification, solution and simultaneous execution of multiple motion tasks in real-time while being reactive to dynamism in the environment. Kinodynamic Fabrics allows for the specification of prioritized motion tasks as forced spectral semi-sprays and solves for desired robot joint accelerations at real-time frequencies. We evaluate the capabilities of Kinodynamic fabrics on diverse physically challenging whole-body control tasks with a bipedal humanoid robot both in simulation and in the real-world. Kinodynamic Fabrics outperforms the state-of-the-art Quadratic Program based whole-body controller on a variety of whole-body control tasks on run-time and reactivity metrics in our experiments. Our open-source implementation of Kinodynamic Fabrics as well as robot demonstration videos can be found at this url: https://adubredu.github.io/kinofabs

    Evolution of humanoid robot and contribution of various countries in advancing the research and development of the platform

    Get PDF
    A human like autonomous robot which is capable to adapt itself with the changing of its environment and continue to reach its goal is considered as Humanoid Robot. These characteristics differs the Android from the other kind of robots. In recent years there has been much progress in the development of Humanoid and still there are a lot of scopes in this field. A number of research groups are interested in this area and trying to design and develop a various platforms of Humanoid based on mechanical and biological concept. Many researchers focus on the designing of lower torso to make the Robot navigating as like as a normal human being do. Designing the lower torso which includes west, hip, knee, ankle and toe, is the more complex and more challenging task. Upper torso design is another complex but interesting task that includes the design of arms and neck. Analysis of walking gait, optimal control of multiple motors or other actuators, controlling the Degree of Freedom (DOF), adaptability control and intelligence are also the challenging tasks to make a Humanoid to behave like a human. Basically research on this field combines a variety of disciplines which make it more thought-provoking area in Mechatronics Engineering. In this paper a various platforms for Humanoid Robot development are identified and described based on the evolutionary research on robotics. The paper also depicts a virtual map of humanoid platform development from the ancient time to present time. It is very important and effective to analyze the development phases of androids because of its Business, Educational and Research value. Basic comparisons between the different designs of Humanoid Structures are also analyzed in this paper. ยฉICROS
    • โ€ฆ
    corecore