117 research outputs found

    Exploring Structural Consistency in Graph Regularized Joint Spectral-Spatial Sparse Coding for Hyperspectral Image Classification

    Get PDF
    In hyperspectral image classification, both spectral and spatial data distributions are important in describing and identifying different materials and objects in the image. Furthermore, consistent spatial structures across bands can be useful in capturing inherent structural information of objects. These imply that three properties should be considered when reconstructing an image using sparse coding methods. First, the distribution of different ground objects leads to different coding coefficients across the spatial locations. Second, local spatial structures change slightly across bands due to different reflectance properties of various object materials. Finally and more importantly, some sort of structural consistency shall be enforced across bands to reflect the fact that the same object appears at the same spatial location in all bands of an image. Based on these considerations, we propose a novel joint spectral-spatial sparse coding model that explores structural consistency for hyperspectral image classification. For each band image, we adopt a sparse coding step to reconstruct the structures in the band image. This allows different dictionaries be generated to characterize the band-wise image variation. At the same time, we enforce the same coding coefficients at the same spatial location in different bands so as to maintain consistent structures across bands. To further promote the discriminating power of the model, we incorporate a graph Laplacian sparsity constraint into the model to ensure spectral consistency in the dictionary generation step. Experimental results show that the proposed method outperforms some state-of-the-art spectral-spatial sparse coding methods

    Optimized kernel minimum noise fraction transformation for hyperspectral image classification

    Get PDF
    This paper presents an optimized kernel minimum noise fraction transformation (OKMNF) for feature extraction of hyperspectral imagery. The proposed approach is based on the kernel minimum noise fraction (KMNF) transformation, which is a nonlinear dimensionality reduction method. KMNF can map the original data into a higher dimensional feature space and provide a small number of quality features for classification and some other post processing. Noise estimation is an important component in KMNF. It is often estimated based on a strong relationship between adjacent pixels. However, hyperspectral images have limited spatial resolution and usually have a large number of mixed pixels, which make the spatial information less reliable for noise estimation. It is the main reason that KMNF generally shows unstable performance in feature extraction for classification. To overcome this problem, this paper exploits the use of a more accurate noise estimation method to improve KMNF. We propose two new noise estimation methods accurately. Moreover, we also propose a framework to improve noise estimation, where both spectral and spatial de-correlation are exploited. Experimental results, conducted using a variety of hyperspectral images, indicate that the proposed OKMNF is superior to some other related dimensionality reduction methods in most cases. Compared to the conventional KMNF, the proposed OKMNF benefits significant improvements in overall classification accuracy

    Task-specific and interpretable feature learning

    Get PDF
    Deep learning models have had tremendous impacts in recent years, while a question has been raised by many: Is deep learning just a triumph of empiricism? There has been emerging interest in reducing the gap between the theoretical soundness and interpretability, and the empirical success of deep models. This dissertation provides a comprehensive discussion on bridging traditional model-based learning approaches that emphasize problem-specific reasoning, and deep models that allow for larger learning capacity. The overall goal is to devise the next-generation feature learning architectures that are: 1) task-specific, namely, optimizing the entire pipeline from end to end while taking advantage of available prior knowledge and domain expertise; and 2) interpretable, namely, being able to learn a representation consisting of semantically sensible variables, and to display predictable behaviors. This dissertation starts by showing how the classical sparse coding models could be improved in a task-specific way, by formulating the entire pipeline as bi-level optimization. Then, it mainly illustrates how to incorporate the structure of classical learning models, e.g., sparse coding, into the design of deep architectures. A few concrete model examples are presented, ranging from the ℓ0\ell_0 and ℓ1\ell_1 sparse approximation models, to the ℓ∞\ell_\infty constrained model and the dual-sparsity model. The analytic tools in the optimization problems can be translated to guide the architecture design and performance analysis of deep models. As a result, those customized deep models demonstrate improved performance, intuitive interpretation, and efficient parameter initialization. On the other hand, deep networks are shown to be analogous to brain mechanisms. They exhibit the ability to describe semantic content from the primitive level to the abstract level. This dissertation thus also presents a preliminary investigation of the synergy between feature learning with cognitive science and neuroscience. Two novel application domains, image aesthetics assessment and brain encoding, are explored, with promising preliminary results achieved

    Tensor singular spectral analysis for 3D feature extraction in hyperspectral images.

    Get PDF
    Due to the cubic structure of a hyperspectral image (HSI), how to characterize its spectral and spatial properties in three dimensions is challenging. Conventional spectral-spatial methods usually extract spectral and spatial information separately, ignoring their intrinsic correlations. Recently, some 3D feature extraction methods are developed for the extraction of spectral and spatial features simultaneously, although they rely on local spatial-spectral regions and thus ignore the global spectral similarity and spatial consistency. Meanwhile, some of these methods contain huge model parameters which require a large number of training samples. In this paper, a novel Tensor Singular Spectral Analysis (TensorSSA) method is proposed to extract global and low-rank features of HSI. In TensorSSA, an adaptive embedding operation is first proposed to construct a trajectory tensor corresponding to the entire HSI, which takes full advantage of the spatial similarity and improves the adequate representation of the global low-rank properties of the HSI. Moreover, the obtained trajectory tensor, which contains the global and local spatial and spectral information of the HSI, is decomposed by the Tensor singular value decomposition (t-SVD) to explore its low-rank intrinsic features. Finally, the efficacy of the extracted features is evaluated using the accuracy of image classification with a support vector machine (SVM) classifier. Experimental results on three publicly available datasets have fully demonstrated the superiority of the proposed TensorSSA over a few state-of-the-art 2D/3D feature extraction and deep learning algorithms, even with a limited number of training samples

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

    Get PDF
    Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area

    Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

    Get PDF
    Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area
    • …
    corecore