7,575 research outputs found

    The Scalable Brain Atlas: instant web-based access to public brain atlases and related content

    Get PDF
    The Scalable Brain Atlas (SBA) is a collection of web services that provide unified access to a large collection of brain atlas templates for different species. Its main component is an atlas viewer that displays brain atlas data as a stack of slices in which stereotaxic coordinates and brain regions can be selected. These are subsequently used to launch web queries to resources that require coordinates or region names as input. It supports plugins which run inside the viewer and respond when a new slice, coordinate or region is selected. It contains 20 atlas templates in six species, and plugins to compute coordinate transformations, display anatomical connectivity and fiducial points, and retrieve properties, descriptions, definitions and 3d reconstructions of brain regions. The ambition of SBA is to provide a unified representation of all publicly available brain atlases directly in the web browser, while remaining a responsive and light weight resource that specializes in atlas comparisons, searches, coordinate transformations and interactive displays.Comment: Rolf K\"otter sadly passed away on June 9th, 2010. He co-initiated this project and played a crucial role in the design and quality assurance of the Scalable Brain Atla

    ICLab: A Global, Longitudinal Internet Censorship Measurement Platform

    Get PDF
    Researchers have studied Internet censorship for nearly as long as attempts to censor contents have taken place. Most studies have however been limited to a short period of time and/or a few countries; the few exceptions have traded off detail for breadth of coverage. Collecting enough data for a comprehensive, global, longitudinal perspective remains challenging. In this work, we present ICLab, an Internet measurement platform specialized for censorship research. It achieves a new balance between breadth of coverage and detail of measurements, by using commercial VPNs as vantage points distributed around the world. ICLab has been operated continuously since late 2016. It can currently detect DNS manipulation and TCP packet injection, and overt "block pages" however they are delivered. ICLab records and archives raw observations in detail, making retrospective analysis with new techniques possible. At every stage of processing, ICLab seeks to minimize false positives and manual validation. Within 53,906,532 measurements of individual web pages, collected by ICLab in 2017 and 2018, we observe blocking of 3,602 unique URLs in 60 countries. Using this data, we compare how different blocking techniques are deployed in different regions and/or against different types of content. Our longitudinal monitoring pinpoints changes in censorship in India and Turkey concurrent with political shifts, and our clustering techniques discover 48 previously unknown block pages. ICLab's broad and detailed measurements also expose other forms of network interference, such as surveillance and malware injection.Comment: To appear in Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland 2020). San Francisco, CA. May 202

    Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function

    Get PDF
    Background. Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. Methods. We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle-and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. Results. Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. Conclusions. Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies
    corecore