106 research outputs found

    A Survey on User Interaction with Linked Data

    Get PDF
    Since the beginning of the Semantic Web and the coining of the term Linked Data in 2006, more than one thousand datasets with over sixteen thousand links have been published to the Linked Open Data Cloud. This rising interest is fuelled by the benefits that semantically annotated and machine-readable information can have in many systems. Alongside this growth we also observe a rise in humans creating and consuming Linked Data, and the opportunity to study and develop guidelines for tackling the new user interaction problems that arise with it. To gather information on the current solutions for modelling user interaction for these applications, we conducted a study surveying the interaction techniques provided in the state of the art of Linked Data tools and applications developed for users with no experience with Semantic Web technologies. The 18 tools reviewed are described and compared according to the interaction features provided, techniques used for visualising one instance and a set of instances, search solutions implemented, and the evaluation methods used to evaluate the proposed interaction solutions. From this review, we can conclude that researchers have started to deviate from more traditional visualisation techniques, like graph visualisations, when developing for lay users. This shows a current effort in developing Semantic Web tools to be used by lay users and motivates the documentation and formalisation of the solutions encountered in the studied tools. Copyright (c) 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    A comparative study of state-of-the-art linked data visualization tools

    Get PDF
    Data visualization tools are of great importance for the exploration and the analysis of Linked Data (LD) datasets. Such tools allow users to get an overview, understand content, and discover interesting insights of a dataset. Visualization approaches vary according to the domain, the type of data, the task that the user is trying to perform, as well as the skills of the user. Thus, the study of the capabilities that each approach offers is crucial in supporting users to select the proper tool/technique based on their need. In this paper we present a comparative study of the state-of-the-art LD visualization tools over a list of fundamental use cases. First, we define 16 use cases that are representative in the setting of LD visual exploration, examining several tool's aspects; e.g., functionality capabilities, feature richness. Then, we evaluate these use cases over 10 LD visualization tools, examining: (1) if the tools have the required functionality for the tasks; and (2) if they allow the successful completion of the tasks over the DBpedia dataset. Finally, we discuss the insights derived from the evaluation, and we point out possible future directions

    Proceedings of the GIS Research UK 18th Annual Conference GISRUK 2010

    Get PDF
    This volume holds the papers from the 18th annual GIS Research UK (GISRUK). This year the conference, hosted at University College London (UCL), from Wednesday 14 to Friday 16 April 2010. The conference covered the areas of core geographic information science research as well as applications domains such as crime and health and technological developments in LBS and the geoweb. UCL’s research mission as a global university is based around a series of Grand Challenges that affect us all, and these were accommodated in GISRUK 2010. The overarching theme this year was “Global Challenges”, with specific focus on the following themes: * Crime and Place * Environmental Change * Intelligent Transport * Public Health and Epidemiology * Simulation and Modelling * London as a global city * The geoweb and neo-geography * Open GIS and Volunteered Geographic Information * Human-Computer Interaction and GIS Traditionally, GISRUK has provided a platform for early career researchers as well as those with a significant track record of achievement in the area. As such, the conference provides a welcome blend of innovative thinking and mature reflection. GISRUK is the premier academic GIS conference in the UK and we are keen to maintain its outstanding record of achievement in developing GIS in the UK and beyond

    Proceedings of digital cultural heritage: FUTURE VISIONS London Symposium

    Get PDF

    Integrated topological representation of multi-scale utility resource networks

    Get PDF
    PhD ThesisThe growth of urban areas and their resource consumption presents a significant global challenge. Existing utility resource supply systems are unresponsive, unreliable and costly. There is a need to improve the configuration and management of the infrastructure networks that carry these resources from source to consumer and this is best performed through analysis of multi-scale, integrated digital representations. However, the real-world networks are represented across different datasets that are underpinned by different data standards, practices and assumptions, and are thus challenging to integrate. Existing integration methods focus predominantly on achieving maximum information retention through complex schema mappings and the development of new data standards, and there is strong emphasis on reconciling differences in geometries. However, network topology is of greatest importance for the analysis of utility networks and simulation of utility resource flows because it is a representation of functional connectivity, and the derivation of this topology does not require the preservation of full information detail. The most pressing challenge is asserting the connectivity between the datasets that each represent subnetworks of the entire end-to-end network system. This project presents an approach to integration that makes use of abstracted digital representations of electricity and water networks to infer inter-dataset network connectivity, exploring what can be achieved by exploiting commonalities between existing datasets and data standards to overcome their otherwise inhibiting disparities. The developed methods rely on the use of graph representations, heuristics and spatial inference, and the results are assessed using surveying techniques and statistical analysis of uncertainties. An algorithm developed for water networks was able to correctly infer a building connection that was absent from source datasets. The thesis concludes that several of the key use cases for integrated topological representation of utility networks are partially satisfied through the methods presented, but that some differences in data standardisation and best practice in the GIS and BIM domains prevent full automation. The common and unique identification of real-world objects, agreement on a shared concept vocabulary for the built environment, more accurate positioning of distribution assets, consistent use of (and improved best practice for) georeferencing of BIM models and a standardised numerical expression of data uncertainties are identified as points of development.Engineering and Physical Sciences Research Council Ordnance Surve
    • …
    corecore