2,861 research outputs found

    Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction

    Full text link
    Estimating uncertainty of camera parameters computed in Structure from Motion (SfM) is an important tool for evaluating the quality of the reconstruction and guiding the reconstruction process. Yet, the quality of the estimated parameters of large reconstructions has been rarely evaluated due to the computational challenges. We present a new algorithm which employs the sparsity of the uncertainty propagation and speeds the computation up about ten times \wrt previous approaches. Our computation is accurate and does not use any approximations. We can compute uncertainties of thousands of cameras in tens of seconds on a standard PC. We also demonstrate that our approach can be effectively used for reconstructions of any size by applying it to smaller sub-reconstructions.Comment: ECCV 201

    Throughput-Distortion Computation Of Generic Matrix Multiplication: Toward A Computation Channel For Digital Signal Processing Systems

    Get PDF
    The generic matrix multiply (GEMM) function is the core element of high-performance linear algebra libraries used in many computationally-demanding digital signal processing (DSP) systems. We propose an acceleration technique for GEMM based on dynamically adjusting the imprecision (distortion) of computation. Our technique employs adaptive scalar companding and rounding to input matrix blocks followed by two forms of packing in floating-point that allow for concurrent calculation of multiple results. Since the adaptive companding process controls the increase of concurrency (via packing), the increase in processing throughput (and the corresponding increase in distortion) depends on the input data statistics. To demonstrate this, we derive the optimal throughput-distortion control framework for GEMM for the broad class of zero-mean, independent identically distributed, input sources. Our approach converts matrix multiplication in programmable processors into a computation channel: when increasing the processing throughput, the output noise (error) increases due to (i) coarser quantization and (ii) computational errors caused by exceeding the machine-precision limitations. We show that, under certain distortion in the GEMM computation, the proposed framework can significantly surpass 100% of the peak performance of a given processor. The practical benefits of our proposal are shown in a face recognition system and a multi-layer perceptron system trained for metadata learning from a large music feature database.Comment: IEEE Transactions on Signal Processing (vol. 60, 2012

    Julia: A Fresh Approach to Numerical Computing

    Get PDF
    Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast. Julia questions notions generally held as "laws of nature" by practitioners of numerical computing: 1. High-level dynamic programs have to be slow. 2. One must prototype in one language and then rewrite in another language for speed or deployment, and 3. There are parts of a system for the programmer, and other parts best left untouched as they are built by the experts. We introduce the Julia programming language and its design --- a dance between specialization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming. Julia shows that one can have machine performance without sacrificing human convenience.Comment: 37 page

    Accuracy-guaranteed bit-width optimization

    No full text
    Published versio

    White Paper from Workshop on Large-scale Parallel Numerical Computing Technology (LSPANC 2020): HPC and Computer Arithmetic toward Minimal-Precision Computing

    Full text link
    In numerical computations, precision of floating-point computations is a key factor to determine the performance (speed and energy-efficiency) as well as the reliability (accuracy and reproducibility). However, precision generally plays a contrary role for both. Therefore, the ultimate concept for maximizing both at the same time is the minimal-precision computing through precision-tuning, which adjusts the optimal precision for each operation and data. Several studies have been already conducted for it so far (e.g. Precimoniuos and Verrou), but the scope of those studies is limited to the precision-tuning alone. Hence, we aim to propose a broader concept of the minimal-precision computing system with precision-tuning, involving both hardware and software stack. In 2019, we have started the Minimal-Precision Computing project to propose a more broad concept of the minimal-precision computing system with precision-tuning, involving both hardware and software stack. Specifically, our system combines (1) a precision-tuning method based on Discrete Stochastic Arithmetic (DSA), (2) arbitrary-precision arithmetic libraries, (3) fast and accurate numerical libraries, and (4) Field-Programmable Gate Array (FPGA) with High-Level Synthesis (HLS). In this white paper, we aim to provide an overview of various technologies related to minimal- and mixed-precision, to outline the future direction of the project, as well as to discuss current challenges together with our project members and guest speakers at the LSPANC 2020 workshop; https://www.r-ccs.riken.jp/labs/lpnctrt/lspanc2020jan/

    Programmable Logic Devices in Experimental Quantum Optics

    Get PDF
    We discuss the unique capabilities of programmable logic devices (PLD's) for experimental quantum optics and describe basic procedures of design and implementation. Examples of advanced applications include optical metrology and feedback control of quantum dynamical systems. As a tutorial illustration of the PLD implementation process, a field programmable gate array (FPGA) controller is used to stabilize the output of a Fabry-Perot cavity
    • 

    corecore