11,026 research outputs found

    Exploring Problem Solving Paths in a Java Programming Course

    Get PDF
    Assessment of students’ programming submissions has been the focus of interest in many studies. Although the final submissions capture the whole program, they often tell very little about how it was developed. In this paper, we are able to look at intermediate programming steps using a unique dataset that captures a series of snapshots showing how students developed their program over time. We assessed each of these intermediate steps and performed a fine-grained concept-based analysis on each step to identify the most common programming paths. Analysis of results showed that most of the students tend to incrementally build the program and improve its correctness. This finding provides us with evidence that intermediate programming steps are important, and need to be taken into account for not only improving user modelling in educational programming systems, but also for providing better feedback to students

    Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution

    Full text link
    Constraint solution reuse is an effective approach to save the time of constraint solving in symbolic execution. Most of the existing reuse approaches are based on syntactic or semantic equivalence of constraints; e.g. the Green framework is able to reuse constraints which have different representations but are semantically equivalent, through canonizing constraints into syntactically equivalent normal forms. However, syntactic/semantic equivalence is not a necessary condition for reuse--some constraints are not syntactically or semantically equivalent, but their solutions still have potential for reuse. Existing approaches are unable to recognize and reuse such constraints. In this paper, we present GreenTrie, an extension to the Green framework, which supports constraint reuse based on the logical implication relations among constraints. GreenTrie provides a component, called L-Trie, which stores constraints and solutions into tries, indexed by an implication partial order graph of constraints. L-Trie is able to carry out logical reduction and logical subset and superset querying for given constraints, to check for reuse of previously solved constraints. We report the results of an experimental assessment of GreenTrie against the original Green framework, which shows that our extension achieves better reuse of constraint solving result and saves significant symbolic execution time.Comment: this paper has been submitted to conference ISSTA 201

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Studying Organisational Topology with Simple Computational Models

    Get PDF
    The behaviour of many complex systems is influenced by the underlying network topology. In particular, this applies to social systems in which people or organisational units collaboratively solve problems. Network rewiring processes are one useful tool in understanding the relationship between network topology and behaviour. Here we use the Kawachi network rewiring process, together with three simple simulation models of organisational collaboration, to investigate the network characteristics that influence performance. The simulation models are based on the Assignment Problem, the Kuramoto Model from physics, and a novel model of collaborative problem-solving which involves finding numbers with certain characteristics, the existence of which is guaranteed by Lagrange\'s Theorem. For all three models, performance is best when the underlying organisational network has a low average distance between nodes. In addition, the third model identified long-range connectivity between nodes as an important predictor of performance. The commonly-used clustering coefficient, which is a measure of short-range connectivity, did not affect performance. We would expect that long-range network connectivity would also influence the behaviour of other complex systems displaying global self-synchronization. The paper also demonstrates the utility of simple computational models in studying issues of organisational topology.Network Rewiring, Small World Networks, Self-Synchronization, Agent Simulation, Collaboration, Problem Solving

    Unifying Execution of Imperative and Declarative Code

    Get PDF
    We present a unified environment for running declarative specifications in the context of an imperative object-Oriented programming language. Specifications are Alloy-like, written in first-order relational logic with transitive closure, and the imperative language is Java. By being able to mix imperative code with executable declarative specifications, the user can easily express constraint problems in place, i.e., in terms of the existing data structures and objects on the heap. After a solution is found, the heap is updated to reflect the solution, so the user can continue to manipulate the program heap in the usual imperative way. We show that this approach is not only convenient, but, for certain problems can also outperform a standard imperative implementation. We also present an optimization technique that allowed us to run our tool on heaps with almost 2000 objects

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    corecore