538 research outputs found

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Optimizing energy consumption in smart cities’ mobility: electric vehicles, algorithms, and collaborative economy

    Get PDF
    Mobility and transportation activities in smart cities require an increasing amount of energy. With the frequent energy crises arising worldwide and the need for a more sustainable and environmental friendly economy, optimizing energy consumption in these growing activities becomes a must. This work reviews the latest works in this matter and discusses several challenges that emerge from the aforementioned social and industrial demands. The paper analyzes how collaborative concepts and the increasing use of electric vehicles can contribute to reduce energy consumption practices, as well as intelligent x-heuristic algorithms that can be employed to achieve this fundamental goal. In addition, the paper analyzes computational results from previous works on mobility and transportation in smart cities applying x-heuristics algorithms. Finally, a novel computational experiment, involving a ridesharing example, is carried out to illustrate the benefits that can be obtained by employing these algorithms.Peer ReviewedPostprint (published version

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Smart Energy and Intelligent Transportation Systems

    Get PDF
    With the Internet of Things and various information and communication technologies, a city can manage its assets in a smarter way, constituting the urban development vision of a smart city. This facilitates a more efficient use of physical infrastructure and encourages citizen participation. Smart energy and smart mobility are among the key aspects of the smart city, in which the electric vehicle (EV) is believed to take a key role. EVs are powered by various energy sources or the electricity grid. With proper scheduling, a large fleet of EVs can be charged from charging stations and parking infrastructures. Although the battery capacity of a single EV is small, an aggregation of EVs can perform as a significant power source or load, constituting a vehicle-to-grid (V2G) system. Besides acquiring energy from the grid, in V2G, EVs can also support the grid by providing various demand response and auxiliary services. Thanks to this, we can reduce our reliance on fossil fuels and utilize the renewable energy more effectively. This Special Issue “Smart Energy and Intelligent Transportation Systems” addresses existing knowledge gaps and advances smart energy and mobility. It consists of five peer-reviewed papers that cover a range of subjects and applications related to smart energy and transportation

    Electric vehicle charge optimization using ant colony optimization

    Get PDF
    In this project, we are going to investigate a topic that will be of great importance in the coming years, such as the management of the charging of electric cars. It is nothing new that the trend in the automotive sector is towards a future in which electric vehicles will predominate, which can be a problem for the current electricity grid due to the increase in energy demand produced by the charging of these cars. Therefore, it is necessary to investigate different charging methods in order not to saturate the grid. In this work, research has been carried out about the problem mentioned above, proposing an optimization algorithm which is able to manage the charging process of a fleet of cars in a charging car park for electric cars, based on the paper " Electric vehicle charging under power and balance constraints as dynamic scheduling" [7]. In the first part of the work, an extensive state of the art about the most important optimisation algorithms in use today is made, explaining what they are based on and giving a brief explanation of how they work. Then, the problem that has been investigated with this work is described, the optimisation of the electric car charging using the ant colony algorithm (ACO). In addition, the results obtained are analysed and the parts of the work that can be improved in futur

    Transportation Mission-Based Optimization of Heavy Combination Road Vehicles and Distributed Propulsion, Including Predictive Energy and Motion Control

    Get PDF
    This thesis proposes methodologies to improve heavy vehicle design by reducing the total cost of ownership and by increasing energy efficiency and safety.Environmental issues, consumers expectations and the growing demand for freight transport have created a competitive environment in providing better transportation solutions. In this thesis, it is proposed that freight vehicles can be designed in a more cost- and energy-efficient manner if they are customized for narrow ranges of operational domains and transportation use-cases. For this purpose, optimization-based methods were applied to minimize the total cost of ownership and to deliver customized vehicles with tailored propulsion components that best fit the given transportation missions and operational environment. Optimization-based design of the vehicle components was found to be effective due to the simultaneous consideration of the optimization of the transportation mission infrastructure, including charging stations, loading-unloading, routing and fleet composition and size, especially in case of electrified propulsion. Implementing integrated vehicle hardware-transportation optimization could reduce the total cost of ownership by up to 35% in the case of battery electric heavy vehicles. Furthermore, in this thesis, the impacts of two future technological advancements, i.e., heavy vehicle electrification and automation, on road freight transport were discussed. It was shown that automation helps the adoption of battery electric heavy vehicles in freight transport. Moreover, the optimizations and simulations produced a large quantity of data that can help users to select the best vehicle in terms of the size, propulsion system, and driving system for a given transportation assignment. The results of the optimizations revealed that battery electric and hybrid heavy combination vehicles exhibit the lowest total cost of ownership in certain transportation scenarios. In these vehicles, propulsion can be distributed over different axles of different units, thus the front units may be pushed by the rear units. Therefore, online optimal energy management strategies were proposed in this thesis to optimally control the vehicle motion and propulsion in terms of the minimum energy usage and lateral stability. These involved detailed multitrailer vehicle modeling and the design and solution of nonlinear optimal control problems

    K-Means and Alternative Clustering Methods in Modern Power Systems

    Get PDF
    As power systems evolve by integrating renewable energy sources, distributed generation, and electric vehicles, the complexity of managing these systems increases. With the increase in data accessibility and advancements in computational capabilities, clustering algorithms, including K-means, are becoming essential tools for researchers in analyzing, optimizing, and modernizing power systems. This paper presents a comprehensive review of over 440 articles published through 2022, emphasizing the application of K-means clustering, a widely recognized and frequently used algorithm, along with its alternative clustering methods within modern power systems. The main contributions of this study include a bibliometric analysis to understand the historical development and wide-ranging applications of K-means clustering in power systems. This research also thoroughly examines K-means, its various variants, potential limitations, and advantages. Furthermore, the study explores alternative clustering algorithms that can complete or substitute K-means. Some prominent examples include K-medoids, Time-series K-means, BIRCH, Bayesian clustering, HDBSCAN, CLIQUE, SPECTRAL, SOMs, TICC, and swarm-based methods, broadening the understanding and applications of clustering methodologies in modern power systems. The paper highlights the wide-ranging applications of these techniques, from load forecasting and fault detection to power quality analysis and system security assessment. Throughout the examination, it has been observed that the number of publications employing clustering algorithms within modern power systems is following an exponential upward trend. This emphasizes the necessity for professionals to understand various clustering methods, including their benefits and potential challenges, to incorporate the most suitable ones into their studies

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin
    • …
    corecore