21,035 research outputs found

    Youth and Digital Media: From Credibility to Information Quality

    Get PDF
    Building upon a process-and context-oriented information quality framework, this paper seeks to map and explore what we know about the ways in which young users of age 18 and under search for information online, how they evaluate information, and how their related practices of content creation, levels of new literacies, general digital media usage, and social patterns affect these activities. A review of selected literature at the intersection of digital media, youth, and information quality -- primarily works from library and information science, sociology, education, and selected ethnographic studies -- reveals patterns in youth's information-seeking behavior, but also highlights the importance of contextual and demographic factors both for search and evaluation. Looking at the phenomenon from an information-learning and educational perspective, the literature shows that youth develop competencies for personal goals that sometimes do not transfer to school, and are sometimes not appropriate for school. Thus far, educational initiatives to educate youth about search, evaluation, or creation have depended greatly on the local circumstances for their success or failure

    How hard is it to cross the room? -- Training (Recurrent) Neural Networks to steer a UAV

    Full text link
    This work explores the feasibility of steering a drone with a (recurrent) neural network, based on input from a forward looking camera, in the context of a high-level navigation task. We set up a generic framework for training a network to perform navigation tasks based on imitation learning. It can be applied to both aerial and land vehicles. As a proof of concept we apply it to a UAV (Unmanned Aerial Vehicle) in a simulated environment, learning to cross a room containing a number of obstacles. So far only feedforward neural networks (FNNs) have been used to train UAV control. To cope with more complex tasks, we propose the use of recurrent neural networks (RNN) instead and successfully train an LSTM (Long-Short Term Memory) network for controlling UAVs. Vision based control is a sequential prediction problem, known for its highly correlated input data. The correlation makes training a network hard, especially an RNN. To overcome this issue, we investigate an alternative sampling method during training, namely window-wise truncated backpropagation through time (WW-TBPTT). Further, end-to-end training requires a lot of data which often is not available. Therefore, we compare the performance of retraining only the Fully Connected (FC) and LSTM control layers with networks which are trained end-to-end. Performing the relatively simple task of crossing a room already reveals important guidelines and good practices for training neural control networks. Different visualizations help to explain the behavior learned.Comment: 12 pages, 30 figure

    Safe Exploration for Optimizing Contextual Bandits

    Get PDF
    Contextual bandit problems are a natural fit for many information retrieval tasks, such as learning to rank, text classification, recommendation, etc. However, existing learning methods for contextual bandit problems have one of two drawbacks: they either do not explore the space of all possible document rankings (i.e., actions) and, thus, may miss the optimal ranking, or they present suboptimal rankings to a user and, thus, may harm the user experience. We introduce a new learning method for contextual bandit problems, Safe Exploration Algorithm (SEA), which overcomes the above drawbacks. SEA starts by using a baseline (or production) ranking system (i.e., policy), which does not harm the user experience and, thus, is safe to execute, but has suboptimal performance and, thus, needs to be improved. Then SEA uses counterfactual learning to learn a new policy based on the behavior of the baseline policy. SEA also uses high-confidence off-policy evaluation to estimate the performance of the newly learned policy. Once the performance of the newly learned policy is at least as good as the performance of the baseline policy, SEA starts using the new policy to execute new actions, allowing it to actively explore favorable regions of the action space. This way, SEA never performs worse than the baseline policy and, thus, does not harm the user experience, while still exploring the action space and, thus, being able to find an optimal policy. Our experiments using text classification and document retrieval confirm the above by comparing SEA (and a boundless variant called BSEA) to online and offline learning methods for contextual bandit problems.Comment: 23 pages, 3 figure
    • …
    corecore