23,219 research outputs found

    Exploring Object Relation in Mean Teacher for Cross-Domain Detection

    Full text link
    Rendering synthetic data (e.g., 3D CAD-rendered images) to generate annotations for learning deep models in vision tasks has attracted increasing attention in recent years. However, simply applying the models learnt on synthetic images may lead to high generalization error on real images due to domain shift. To address this issue, recent progress in cross-domain recognition has featured the Mean Teacher, which directly simulates unsupervised domain adaptation as semi-supervised learning. The domain gap is thus naturally bridged with consistency regularization in a teacher-student scheme. In this work, we advance this Mean Teacher paradigm to be applicable for cross-domain detection. Specifically, we present Mean Teacher with Object Relations (MTOR) that novelly remolds Mean Teacher under the backbone of Faster R-CNN by integrating the object relations into the measure of consistency cost between teacher and student modules. Technically, MTOR firstly learns relational graphs that capture similarities between pairs of regions for teacher and student respectively. The whole architecture is then optimized with three consistency regularizations: 1) region-level consistency to align the region-level predictions between teacher and student, 2) inter-graph consistency for matching the graph structures between teacher and student, and 3) intra-graph consistency to enhance the similarity between regions of same class within the graph of student. Extensive experiments are conducted on the transfers across Cityscapes, Foggy Cityscapes, and SIM10k, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, we obtain a new record of single model: 22.8% of mAP on Syn2Real detection dataset.Comment: CVPR 2019; The codes and model of our MTOR are publicly available at: https://github.com/caiqi/mean-teacher-cross-domain-detectio

    Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection

    Full text link
    3D object detection from point clouds is crucial in safety-critical autonomous driving. Although many works have made great efforts and achieved significant progress on this task, most of them suffer from expensive annotation cost and poor transferability to unknown data due to the domain gap. Recently, few works attempt to tackle the domain gap in objects, but still fail to adapt to the gap of varying beam-densities between two domains, which is critical to mitigate the characteristic differences of the LiDAR collectors. To this end, we make the attempt to propose a density-insensitive domain adaption framework to address the density-induced domain gap. In particular, we first introduce Random Beam Re-Sampling (RBRS) to enhance the robustness of 3D detectors trained on the source domain to the varying beam-density. Then, we take this pre-trained detector as the backbone model, and feed the unlabeled target domain data into our newly designed task-specific teacher-student framework for predicting its high-quality pseudo labels. To further adapt the property of density-insensitivity into the target domain, we feed the teacher and student branches with the same sample of different densities, and propose an Object Graph Alignment (OGA) module to construct two object-graphs between the two branches for enforcing the consistency in both the attribute and relation of cross-density objects. Experimental results on three widely adopted 3D object detection datasets demonstrate that our proposed domain adaption method outperforms the state-of-the-art methods, especially over varying-density data. Code is available at https://github.com/WoodwindHu/DTS}{https://github.com/WoodwindHu/DTS.Comment: Accepted by CVPR202

    Exploiting Low-confidence Pseudo-labels for Source-free Object Detection

    Full text link
    Source-free object detection (SFOD) aims to adapt a source-trained detector to an unlabeled target domain without access to the labeled source data. Current SFOD methods utilize a threshold-based pseudo-label approach in the adaptation phase, which is typically limited to high-confidence pseudo-labels and results in a loss of information. To address this issue, we propose a new approach to take full advantage of pseudo-labels by introducing high and low confidence thresholds. Specifically, the pseudo-labels with confidence scores above the high threshold are used conventionally, while those between the low and high thresholds are exploited using the Low-confidence Pseudo-labels Utilization (LPU) module. The LPU module consists of Proposal Soft Training (PST) and Local Spatial Contrastive Learning (LSCL). PST generates soft labels of proposals for soft training, which can mitigate the label mismatch problem. LSCL exploits the local spatial relationship of proposals to improve the model's ability to differentiate between spatially adjacent proposals, thereby optimizing representational features further. Combining the two components overcomes the challenges faced by traditional methods in utilizing low-confidence pseudo-labels. Extensive experiments on five cross-domain object detection benchmarks demonstrate that our proposed method outperforms the previous SFOD methods, achieving state-of-the-art performance

    Unsupervised Domain Adaptive Detection with Network Stability Analysis

    Full text link
    Domain adaptive detection aims to improve the generality of a detector, learned from the labeled source domain, on the unlabeled target domain. In this work, drawing inspiration from the concept of stability from the control theory that a robust system requires to remain consistent both externally and internally regardless of disturbances, we propose a novel framework that achieves unsupervised domain adaptive detection through stability analysis. In specific, we treat discrepancies between images and regions from different domains as disturbances, and introduce a novel simple but effective Network Stability Analysis (NSA) framework that considers various disturbances for domain adaptation. Particularly, we explore three types of perturbations including heavy and light image-level disturbances and instancelevel disturbance. For each type, NSA performs external consistency analysis on the outputs from raw and perturbed images and/or internal consistency analysis on their features, using teacher-student models. By integrating NSA into Faster R-CNN, we immediately achieve state-of-the-art results. In particular, we set a new record of 52.7% mAP on Cityscapes-to-FoggyCityscapes, showing the potential of NSA for domain adaptive detection. It is worth noticing, our NSA is designed for general purpose, and thus applicable to one-stage detection model (e.g., FCOS) besides the adopted one, as shown by experiments. https://github.com/tiankongzhang/NSA

    Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher

    Full text link
    Adapting visual object detectors to operational target domains is a challenging task, commonly achieved using unsupervised domain adaptation (UDA) methods. When the labeled dataset is coming from multiple source domains, treating them as separate domains and performing a multi-source domain adaptation (MSDA) improves the accuracy and robustness over mixing these source domains and performing a UDA, as observed by recent studies in MSDA. Existing MSDA methods learn domain invariant and domain-specific parameters (for each source domain) for the adaptation. However, unlike single-source UDA methods, learning domain-specific parameters makes them grow significantly proportional to the number of source domains used. This paper proposes a novel MSDA method called Prototype-based Mean-Teacher (PMT), which uses class prototypes instead of domain-specific subnets to preserve domain-specific information. These prototypes are learned using a contrastive loss, aligning the same categories across domains and separating different categories far apart. Because of the use of prototypes, the parameter size of our method does not increase significantly with the number of source domains, thus reducing memory issues and possible overfitting. Empirical studies show PMT outperforms state-of-the-art MSDA methods on several challenging object detection datasets
    • …
    corecore