189 research outputs found

    Exploring Multi-Modal Communication Approach for Young Children with Spinal Muscular Atrophy (SMA)

    Get PDF
    Spinal Muscular Atrophy (SMA) is a rare genetic disease affecting approximately 1 in 10,000 babies, yet it is the number 1 genetic killer of infants and toddlers. Individuals with SMA, especially the most serve type I, can face great challenges in communication, environment control, and learning knowledge. Since most hildren with type I SMA have extremely limit muscular functionality, they cannot use regular interactive devices. In this study, we propose a multi-modal communication approach and explore various sensors and switches for SMA users. Specifically, we propose a light-weight and wireless microcontroller to process electric signals from sensors and switches. It can be paired and used in any devices which supports Bluetooth. Moreover, an interactive game and a three-phase pilot study are designed for assessing usability of various input devices

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO

    Differential Contributions of Transcallosal Sensorimotor Fiber Tract Structure and Neurophysiologic Function to Manual Motor Control in Young and Older Adults.

    Full text link
    Consider tying your shoes, one of the most automatic movements an adult performs. Each hand works independently during this task to accomplish a unified goal. With advanced age comes a decline in motor control affecting the ability of older adults to perform such activities of daily living. Specifically, older adults show pronounced deficits in the ability to perform tasks with both hands. I investigated whether age-related declines in callosal microstructural integrity and inhibitory function contribute to age differences in the ability to perform such tasks. In the first study I determined the relationship between corpus callosum microstructural integrity and interhemispheric inhibition in young adults. I found a positive relationship between interhemispheric inhibition and microstructure of interhemispheric fibers that was specific to tracts connecting the primary motor cortices. My second study revealed that young adults with greater interhemispheric inhibition had reduced motor overflow during a unimanual force production task; however these same individuals had the poorest performance during a bimanual independent force production task. I suggest that a high capacity for interhemispheric inhibition from one motor cortex to another can effectively prevent motor overflow during unimanual tasks, however it also limits the ability for optimal control during independent bimanual tasks, possibly due to a reduced capability for interhemispheric cooperation. My third study determined whether age reductions in callosal structure and inhibitory function underlie impairments in independent bimanual control. I found that better microstructure of callosal tracts connecting the two primary motor cortices was positively related to bimanual task performance in older adults, but negatively related to performance in young adults. Further, increased interhemispheric inhibition was related to poorer bimanual task performance in older adults across all tasks, whereas this relationship was only observed in young adults for the independent bimanual task. Collectively, the results of my dissertation have identified age reductions in callosal structure and their resultant impact on neurophysiological function and manual motor control. These studies provide a mechanistic understanding that can be leveraged for the design of targeted training interventions that will allow individuals with dysfunction of interhemispheric inhibition, to maintain independence and improve their quality of life.Ph.D.KinesiologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89624/1/bfling_1.pd

    Applications of EMG in Clinical and Sports Medicine

    Get PDF
    This second of two volumes on EMG (Electromyography) covers a wide range of clinical applications, as a complement to the methods discussed in volume 1. Topics range from gait and vibration analysis, through posture and falls prevention, to biofeedback in the treatment of neurologic swallowing impairment. The volume includes sections on back care, sports and performance medicine, gynecology/urology and orofacial function. Authors describe the procedures for their experimental studies with detailed and clear illustrations and references to the literature. The limitations of SEMG measures and methods for careful analysis are discussed. This broad compilation of articles discussing the use of EMG in both clinical and research applications demonstrates the utility of the method as a tool in a wide variety of disciplines and clinical fields
    corecore