30 research outputs found

    Hybrid Query Expansion on Ontology Graph in Biomedical Information Retrieval

    Get PDF
    Nowadays, biomedical researchers publish thousands of papers and journals every day. Searching through biomedical literature to keep up with the state of the art is a task of increasing difficulty for many individual researchers. The continuously increasing amount of biomedical text data has resulted in high demands for an efficient and effective biomedical information retrieval (BIR) system. Though many existing information retrieval techniques can be directly applied in BIR, BIR distinguishes itself in the extensive use of biomedical terms and abbreviations which present high ambiguity. First of all, we studied a fundamental yet simpler problem of word semantic similarity. We proposed a novel semantic word similarity algorithm and related tools called Weighted Edge Similarity Tools (WEST). WEST was motivated by our discovery that humans are more sensitive to the semantic difference due to the categorization than that due to the generalization/specification. Unlike most existing methods which model the semantic similarity of words based on either the depth of their Lowest Common Ancestor (LCA) or the traversal distance of between the word pair in WordNet, WEST also considers the joint contribution of the weighted distance between two words and the weighted depth of their LCA in WordNet. Experiments show that weighted edge based word similarity method has achieved 83.5% accuracy to human judgments. Query expansion problem can be viewed as selecting top k words which have the maximum accumulated similarity to a given word set. It has been proved as an effective method in BIR and has been studied for over two decades. However, most of the previous researches focus on only one controlled vocabulary: MeSH. In addition, early studies find that applying ontology won\u27t necessarily improve searching performance. In this dissertation, we propose a novel graph based query expansion approach which is able to take advantage of the global information from multiple controlled vocabularies via building a biomedical ontology graph from selected vocabularies in Metathesaurus. We apply Personalized PageRank algorithm on the ontology graph to rank and identify top terms which are highly relevant to the original user query, yet not presented in that query. Those new terms are reordered by a weighted scheme to prioritize specialized concepts. We multiply a scaling factor to those final selected terms to prevent query drifting and append them to the original query in the search. Experiments show that our approach achieves 17.7% improvement in 11 points average precision and recall value against Lucene\u27s default indexing and searching strategy and by 24.8% better against all the other strategies on average. Furthermore, we observe that expanding with specialized concepts rather than generalized concepts can substantially improve the recall-precision performance. Furthermore, we have successfully applied WEST from the underlying WordNet graph to biomedical ontology graph constructed by multiple controlled vocabularies in Metathesaurus. Experiments indicate that WEST further improve the recall-precision performance. Finally, we have developed a Graph-based Biomedical Search Engine (G-Bean) for retrieving and visualizing information from literature using our proposed query expansion algorithm. G-Bean accepts any medical related user query and processes them with expanded medical query to search for the MEDLINE database

    Distributional Semantic Models for Clinical Text Applied to Health Record Summarization

    Get PDF
    As information systems in the health sector are becoming increasingly computerized, large amounts of care-related information are being stored electronically. In hospitals clinicians continuously document treatment and care given to patients in electronic health record (EHR) systems. Much of the information being documented is in the form of clinical notes, or narratives, containing primarily unstructured free-text information. For each care episode, clinical notes are written on a regular basis, ending with a discharge summary that basically summarizes the care episode. Although EHR systems are helpful for storing and managing such information, there is an unrealized potential in utilizing this information for smarter care assistance, as well as for secondary purposes such as research and education. Advances in clinical language processing are enabling computers to assist clinicians in their interaction with the free-text information documented in EHR systems. This includes assisting in tasks like query-based search, terminology development, knowledge extraction, translation, and summarization. This thesis explores various computerized approaches and methods aimed at enabling automated semantic textual similarity assessment and information extraction based on the free-text information in EHR systems. The focus is placed on the task of (semi-)automated summarization of the clinical notes written during individual care episodes. The overall theme of the presented work is to utilize resource-light approaches and methods, circumventing the need to manually develop knowledge resources or training data. Thus, to enable computational semantic textual similarity assessment, word distribution statistics are derived from large training corpora of clinical free text and stored as vector-based representations referred to as distributional semantic models. Also resource-light methods are explored in the task of performing automatic summarization of clinical freetext information, relying on semantic textual similarity assessment. Novel and experimental methods are presented and evaluated that focus on: a) distributional semantic models trained in an unsupervised manner from statistical information derived from large unannotated clinical free-text corpora; b) representing and computing semantic similarities between linguistic items of different granularity, primarily words, sentences and clinical notes; and c) summarizing clinical free-text information from individual care episodes. Results are evaluated against gold standards that reflect human judgements. The results indicate that the use of distributional semantics is promising as a resource-light approach to automated capturing of semantic textual similarity relations from unannotated clinical text corpora. Here it is important that the semantics correlate with the clinical terminology, and with various semantic similarity assessment tasks. Improvements over classical approaches are achieved when the underlying vector-based representations allow for a broader range of semantic features to be captured and represented. These are either distributed over multiple semantic models trained with different features and training corpora, or use models that store multiple sense-vectors per word. Further, the use of structured meta-level information accompanying care episodes is explored as training features for distributional semantic models, with the aim of capturing semantic relations suitable for care episode-level information retrieval. Results indicate that such models performs well in clinical information retrieval. It is shown that a method called Random Indexing can be modified to construct distributional semantic models that capture multiple sense-vectors for each word in the training corpus. This is done in a way that retains the original training properties of the Random Indexing method, by being incremental, scalable and distributional. Distributional semantic models trained with a framework called Word2vec, which relies on the use of neural networks, outperform those trained using the classic Random Indexing method in several semantic similarity assessment tasks, when training is done using comparable parameters and the same training corpora. Finally, several statistical features in clinical text are explored in terms of their ability to indicate sentence significance in a text summary generated from the clinical notes. This includes the use of distributional semantics to enable case-based similarity assessment, where cases are other care episodes and their “solutions”, i.e., discharge summaries. A type of manual evaluation is performed, where human experts rates the different aspects of the summaries using a evaluation scheme/tool. In addition, the original clinician-written discharge summaries are explored as gold standard for the purpose of automated evaluation. Evaluation shows a high correlation between manual and automated evaluation, suggesting that such a gold standard can function as a proxy for human evaluations. --- This thesis has been published jointly with Norwegian University of Science and Technology, Norway and University of Turku, Finland.This thesis has beenpublished jointly with Norwegian University of Science and Technology, Norway.Siirretty Doriast

    Development of a text mining approach to disease network discovery

    Get PDF
    Scientific literature is one of the major sources of knowledge for systems biology, in the form of papers, patents and other types of written reports. Text mining methods aim at automatically extracting relevant information from the literature. The hypothesis of this thesis was that biological systems could be elucidated by the development of text mining solutions that can automatically extract relevant information from documents. The first objective consisted in developing software components to recognize biomedical entities in text, which is the first step to generate a network about a biological system. To this end, a machine learning solution was developed, which can be trained for specific biological entities using an annotated dataset, obtaining high-quality results. Additionally, a rule-based solution was developed, which can be easily adapted to various types of entities. The second objective consisted in developing an automatic approach to link the recognized entities to a reference knowledge base. A solution based on the PageRank algorithm was developed in order to match the entities to the concepts that most contribute to the overall coherence. The third objective consisted in automatically extracting relations between entities, to generate knowledge graphs about biological systems. Due to the lack of annotated datasets available for this task, distant supervision was employed to train a relation classifier on a corpus of documents and a knowledge base. The applicability of this approach was demonstrated in two case studies: microRNAgene relations for cystic fibrosis, obtaining a network of 27 relations using the abstracts of 51 recently published papers; and cell-cytokine relations for tolerogenic cell therapies, obtaining a network of 647 relations from 3264 abstracts. Through a manual evaluation, the information contained in these networks was determined to be relevant. Additionally, a solution combining deep learning techniques with ontology information was developed, to take advantage of the domain knowledge provided by ontologies. This thesis contributed with several solutions that demonstrate the usefulness of text mining methods to systems biology by extracting domain-specific information from the literature. These solutions make it easier to integrate various areas of research, leading to a better understanding of biological systems

    Estudio de los flujos de citación científica y su relación con los indicadores de impacto

    Get PDF
    De los datos vaciados en Scopus el estudio se realizará con aquellos que aparecen en SCImago Journal & Country Rank. El trabajo se dividirá en dos partes: la primera se centrará en los hábitos de citación de las disciplinas científicas. Para ello, por un lado se seleccionarán un conjunto de revistas, categorías y áreas científicas pertenecientes a Scopus y sobre ellas se aplicarán los distintos indicadores bibliométricos (Factor de Impacto, SJR…) con el fin de obtener unos resultados que muestren cuales de estas categorías científicas son las más exportadoras de conocimiento. Por otro se analizaran los diversos hábitos de citación y los perfiles de referenciación de las disciplinas científicas y si tienen influencia en los indicadores bibliométricos. La segunda parte del trabajo tratara de ver cómo influye en los índices de impacto, la colaboración científica. De este modo, en el trabajo se indagará en la procedencia de la citación obtenida por los diferentes países, igualmente se va a investigar sobre el destino de la citación realizada por los países. También se tratará de averiguar si colaborando con un país se obtienen más citas que en caso de no colaborar. Y si hay diferencias significativas en este sentido entre las diferentes áreas científicas.The study will be realized with data taken from SCImago Journal and Country Rank, two sources extracted from Scopus database. The work will be divided in two parts. The first part will concentrate on the citation habits of scientific disciplines. In order to do this, on the one hand a group of journals, categories, and scientific subjects taken from Scopus will be selected. Different bibliometric indicators (Journal Impact Factor, SJR…) will be applied to these three domains with the aim to obtain a set of results that show which of the scientific disciplines are the most important knowledge exporters. On the other hand, diverse citation habits and the referencing profiles of scientific disciplines will be analyzed in order to show whether these influence bibliometric indicators. The second part of this study will aim to demonstrate how scientific collaboration influences citation rates. In such a way, the work will investigate the origin of the citation obtained by different countries and simultaneously, it will research their citation output. This study will also aim to demonstrate if collaboration between countries gives place to higher citations rates than no collaboration at all. Finally, it will too show how disciplines perform in this sense

    Theories of Informetrics and Scholarly Communication

    Get PDF
    Scientometrics have become an essential element in the practice and evaluation of science and research, including both the evaluation of individuals and national assessment exercises. Yet, researchers and practitioners in this field have lacked clear theories to guide their work. As early as 1981, then doctoral student Blaise Cronin published "The need for a theory of citing" —a call to arms for the fledgling scientometric community to produce foundational theories upon which the work of the field could be based. More than three decades later, the time has come to reach out the field again and ask how they have responded to this call. This book compiles the foundational theories that guide informetrics and scholarly communication research. It is a much needed compilation by leading scholars in the field that gathers together the theories that guide our understanding of authorship, citing, and impact
    corecore