12,582 research outputs found

    Exploring Interactions in Vehicular Networks

    Get PDF
    International audienceVehicular networks are networks comprised by vehicles trav-eling cities and highways. During their trajectories, these vehicles interact with other vehicles and road side units in order to make safer and enjoyable trac. These interactions may be influenced by several factors. To mention a few: vehicle speed, roads condition, time of day and weather. Moreover, driver behavior and its interests can influence in vehicle features. In this context, the Vehicular Social Networks arise as a new perspective to vehicular networks, where the vehicles " socialize " and share common interests. In this work, we evaluate the behavior of vehicles using two mobility scenarios, in order to classify them according to the interactions performed, identifying common interests and similar routines. Thus, we use metrics of complex networks and statistical techniques. Results prove the existence of routines and human features in Vehicular Networks

    A novel on-board Unit to accelerate the penetration of ITS services

    Get PDF
    In-vehicle connectivity has experienced a big expansion in recent years. Car manufacturers have mainly proposed OBU-based solutions, but these solutions do not take full advantage of the opportunities of inter-vehicle peer-to-peer communications. In this paper we introduce GRCBox, a novel architecture that allows OEM user-devices to directly communicate when located in neighboring vehicles. In this paper we also describe EYES, an application we developed to illustrate the type of novel applications that can be implemented on top of the GRCBox. EYES is an ITS overtaking assistance system that provides the driver with real-time video fed from the vehicle located in front. Finally, we evaluated the GRCbox and the EYES application and showed that, for device-to-device communication, the performance of the GRCBox architecture is comparable to an infrastructure network, introducing a negligible impact

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Using city gates as a means of estimating ancient traffic flows

    Get PDF
    Despite the recent flurry of interest in various aspects of ancient urbanism, we still know little about how much traffic flowed in and out of ancient cities, in part because of problems with using commodities as proxies for trade. This article investigates another approach, which is to estimate these flows from the built environment, concentrating on transport infrastructure such as city gates. To do this, I begin by discussing a new model for how we would expect this kind of infrastructure to expand with population, before investigating the relationship between the populations of sites and the total numbers and widths of city gates, focusing on the Greek and Roman world. The results suggest that there is indeed a systematic relationship between the estimated populations of cities and transport infrastructure, which is entirely consistent with broader theoretical and empirical expectations. This gives us a new way of exploring the connectivity and integration of ancient cities, contributing to a growing body of general theory about how settlements operate across space and time
    corecore