284 research outputs found

    Augmenting the Spatial Perception Capabilities of Users Who Are Blind

    Get PDF
    People who are blind face a series of challenges and limitations resulting from their lack of being able to see, forcing them to either seek the assistance of a sighted individual or work around the challenge by way of a inefficient adaptation (e.g. following the walls in a room in order to reach a door rather than walking in a straight line to the door). These challenges are directly related to blind users' lack of the spatial perception capabilities normally provided by the human vision system. In order to overcome these spatial perception related challenges, modern technologies can be used to convey spatial perception data through sensory substitution interfaces. This work is the culmination of several projects which address varying spatial perception problems for blind users. First we consider the development of non-visual natural user interfaces for interacting with large displays. This work explores the haptic interaction space in order to find useful and efficient haptic encodings for the spatial layout of items on large displays. Multiple interaction techniques are presented which build on prior research (Folmer et al. 2012), and the efficiency and usability of the most efficient of these encodings is evaluated with blind children. Next we evaluate the use of wearable technology in aiding navigation of blind individuals through large open spaces lacking tactile landmarks used during traditional white cane navigation. We explore the design of a computer vision application with an unobtrusive aural interface to minimize veering of the user while crossing a large open space. Together, these projects represent an exploration into the use of modern technology in augmenting the spatial perception capabilities of blind users

    Usability and Acceptance of Exergames Using Different Types of Training among Older Hypertensive Patients in a Simulated Mixed Reality

    Get PDF
    Virtual and augmented reality (VR/AR) exergames are promising tools for increasing training motivation. However, the use of exergames with mixed reality (MR) headsets remains under-researched. Older adults with hypertension could also benefit from the increased training adherence associated with MR. Endurance and strength endurance exercises are recommended for this group to lower blood pressure. The aim of the preliminary study (n = 22) was to compare the usability and acceptance of two exergames, which represent two different training types-strength endurance training (SET) and endurance training (ET). The developed exergame prototypes were applied in "simulated MR" using a VR head-mounted display. We examined the following outcomes: usability (TUI), intention to use (TUI), subjective task load (NASA-TLX), frustration (NASA-TLX), and presence (PQ). The results showed that frustration was significantly greater in the ET than in the SET (p = 0.038). Presence was significantly higher in the SET (p = 0.002). No significant differences in usability and acceptance were found in the exergames. The results indicate that usability and acceptance are not related to the type of training when utilizing MR exergames. Whether the results are transferable with a real MR headset must be determined in further research

    Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    Get PDF
    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview of motion-based video games and other interactive technologies for older adults. First, we summarize existing approaches towards the definition of motion-based video games – often referred to as exergames – and suggest a categorization of motion-based applications into active video games, exergames, and augmented sports. Second, we use this scheme to classify case studies addressing design efforts particularly directed towards older adults. Third, we analyze these case studies with a focus on potential target audiences, benefits, challenges in their deployment, and future design opportunities to investigate whether motion-based video games can be applied to encourage physical activity among older adults. In this context, special attention is paid to evaluation routines and their implications regarding the deployment of such games in the daily lives of older adults. The results show that many case studies examine isolated aspects of motion-based game design for older adults, and despite the broad range of issues in motion-based interaction for older adults covered by the sum of all research projects, there appears to be a disconnect between laboratory-based research and the deployment of motion-based video games in the daily lives of senior citizens. Our literature review suggests that despite research results suggesting various benefits of motion-based play for older adults, most work in the field of game design for senior citizens has focused on the implementation of accessible user interfaces, and that little is known about the long-term deployment of video games for this audience, which is a crucial step if these games are to be implemented in activity programs of senior residences, care homes, or in therapy

    Towards Balancing Fun and Exertion in Exergames: Exploring the Impact of Movement-Based Controller Devices, Exercise Concepts, Game Adaptivity and Player Modes on Player Experience and Training Intensity in Different Exergame Settings

    Get PDF
    Physical inactivity remains one of the biggest societal challenges of the 21st century. The gaming industry and the fitness sector have responded to this alarming fact by introducing game-based or gamified training scenarios and thus established the promising trend of exergaming. Exergames – games controlled by active (whole) body movements – have been extolled as potential attractive and effective training tools. However, the majority of the exergames do not meet the required intensity or effectiveness, nor do they induce the intended training adherence or long-term motivation. One reason for this is that the evaluated exergames were often not co-designed with the user group to meet their specific needs and preferences, nor were they co-designed with an interdisciplinary expert team of game designers (to ensure a good gaming experience) and sports scientists (for a great training experience). Accordingly, the research results from studies with these exergames are rather limited. To fully exploit the potential of these innovative movement tools and to establish them as attractive and effective training approach, it is necessary to understand and explore both the underlying interdisciplinary theories and concepts as well as possible design approaches and their impact on the game and training experience. This dissertation aims to contribute to a better understanding of well-balanced exergame design. It explores and evaluates how different movement-based control devices, exercise concepts, game adaptations, and player modes influence the attractiveness and effectiveness of exergames. The work provides theoretical and practical contributions to the problem area of effective and attractive exergames. For this purpose, a research and development (R&D) approach with iterative phases was followed. As preliminary work for the contributions of this dissertation, exergames were approached from a theoretical perspective. Underlying multidisciplinary theories and concepts of exergames from relevant fields were analyzed and a generic framework was built, which structured the findings based on three interdependent dimensions: the player, the game controller, and the virtual game scenario. Some commercially available exergames were explored to verify the theory-based assumption that the interposition of technology brings specific transformations in the coupling of perception and action that do not occur in real sports situations. Among other things, the comparative pilot study showed that two different controllers (one gesture-based and one haptic device), which allowed for different physical input, were likely to induce diverse gameplay experiences (e.g., higher feeling of flow and self-location when playing with the haptic device) with differently skilled players. However, certain design-specific differences in the two exergame conditions meant that these results could only be interpreted as a first trend. To overcome the limitations of this preliminary study approach (e.g., unequal game design of the commercial exergames and very sports-specific movement concept), Plunder Planet, an adaptive exergame environment, was iteratively designed with and for children and allowed for a single- and cooperative multiplayer experience with two different controller devices. The user-centered design was further informed by insights from the growing body of related R&D work in the field of exergames. The first study presented in this dissertation compared the subjectively experienced attractiveness and effectiveness of Plunder Planet when played with different motion-based controllers. Besides a generally great acceptance of the exergame, it was found that the haptic full-body motion controller provided physical guidance and a more cognitively and coordinatively challenging workout, which was more highly rated by experienced gamers with fewer athletic skills. The gesture-based Kinect sensor felt more natural, allowed more freedom of movement, and provided a rather physically intense but cognitively less challenging workout, which was more highly rated by athletic players with less gameplay experience. Furthermore, experiments were made with an exploratory adaptive algorithm that enabled the cognitive and the physical challenge of the exergame to be manually adapted in real-time based on the player’s fitness and gaming skills. The first and the second study also compared an adaptive with a non-adaptive single player version of Plunder Planet. It could be shown that the (well-balanced) adaptive version of the exergame was better valued than the non-adaptive version with regard to the experienced and measured attractiveness (motivation, game flow, spatial presence experience, balance of cognitive and physical challenge) and effectiveness (heart rate, physical exertion, balance of cognitive and physical challenge) by differently skilled players. Finally, and contrary to the findings from related work, the results of the third study proved that the specifically designed controller technology could be used as an “enabler”, “supporter” and “shaper” of bodily interplay in social exergaming. Based on these promising findings, the goal became to further explore the effectiveness of exergames, refine the adaptive game difficulty algorithm, and explore further attractiveness- and motivation-boosting design approaches. Therefore, the ExerCube, a physically immersive and adaptive fitness game setting, was developed. It was iteratively designed with and for adults and allowed for cooperatively and competitive exergame experiences. With its physically immersive game setup, the ExerCube combines a mixed version of the advantages of both previously tested controllers. A coordinatively and cognitively challenging functional workout protocol with scalable intensity (moderate to high) was developed and the subjective experience of the ExerCube training was compared with a conventional functional training with a personal trainer. The fourth study showed that the game-based training gave signs of reaching a similar intensity to the personal training, but was more highly rated for flow, motivation, and enjoyment. Based on this exploratory comparison of the ExerCube with a personal trainer session, valuable avenues for further design could be identified. Among other things, it could be proved that the player’s focus during the ExerCube session was more on the game than on the own body. Players experienced stronger physical exertion and social pressure with the personal trainer and a stronger cognitive exertion and involvement with the ExerCube. Furthermore, a refined version of the previously tested adaptive game difficulty algorithm was implemented and automated for the first time for purpose of this study. Again it was shown that the adaptive version had benefits with regard to subjectively experienced attractiveness (motivation, game flow, balance of cognitive and physical challenge) and effectiveness (physical exertion, balance of cognitive and physical challenge) compared to the non-adaptive version. In order to further enhance the gaming experience, experiments were also conducted with sound designs and an adaptive audio design with adaptive background music and sound feedback was implemented. It was found to be a promising and beneficial add-on for a user-centered attractive exergame design. To inform the design of a multiplayer version of the ExerCube, different social play mechanics were explored in the fifth study. This resulted in differently balanced experiences of fun, and in physical as well as cognitive exertion. As the preliminary comparative evaluation of the subjectively experienced effectiveness and attractiveness of an ExerCube session and a personal trainer session could prove the general feasibility of the concept and revealed the first indications of the intensity of the ExerCube’s training concept, the objectively measured effectiveness of a single ExerCube session with a functional high-intensity interval training (fHIIT) with a personal trainer was compared in a final sixth study, and after another design iteration. Again, the subjectively experienced attractiveness of both conditions was assessed. It could be shown that the ExerCube is a feasible training device for training at fHIIT-level. While physical exertion was slightly lower than in the conventional fHIIT condition, the ExerCube condition’s average heart rate values reached the fHIIT threshold and also yielded significantly better results for flow, enjoyment, and motivation. The ExerCube training also resulted in a subjectively experienced higher cognitive load (dual-domain training). To sum up, it can be stated that this dissertation provides valuable and fundamental research contributions to the promising field of exergames as attractive and effective training tools. Furthermore, important contributions to design questions in this field could be developed. Since this field is still relatively unexplored, the work presented creates a sound basis for future R&D work in this area

    Online Group-exercises for Older Adults of Different Physical Abilities

    Full text link
    In this paper we describe the design and validation of a virtual fitness environment aiming at keeping older adults physically and socially active. We target particularly older adults who are socially more isolated, physically less active, and with less chances of training in a gym. The virtual fitness environment, namely Gymcentral, was designed to enable and motivate older adults to follow personalised exercises from home, with a (heterogeneous) group of remote friends and under the remote supervision of a Coach. We take the training activity as an opportunity to create social interactions, by complementing training features with social instruments. Finally, we report on the feasibility and effectiveness of the virtual environment, as well as its effects on the usage and social interactions, from an intervention study in Trento, Ital

    Gyroscope induced force feedback for ball impact simulation in exergames.

    Get PDF
    A haptic feedback device for simulating batting sport haptics was designed using the resultant gyroscopic effect from rapidly reorienting spinning flywheels and integrated into a custom cricket themed virtual reality exergame. The device was capable of producing impact vibrations and a 0.1 N m torque. A within-subjects user study conducted on 16 participants, and player presence was evaluated using the Presence Questionnaire. The results of the user study were statistically insignificant due to a small sample size (p=0.153), and we were unable to reject the null hypothesis, but visual data analysis was used to identify trends that supported our hypothesis that increase haptic feedback fidelity increases presence in virtual reality batting sports exergames. Due to the statistical insignificance of these results, further research should be conducted to confirm these findings

    The Effects of Juicy Game Design on Exergames

    Get PDF
    Visual embellishments(VEs) have been increasingly included in most modern video games and in various digital applications. One aspect of these graphical inclusions is called Juicy game design. It refers to user feedback that is not integral to game completion presented through a variety of modalities. Previous research on this topic has provided insight into some effects of juicy game design, however there is a lack of understanding of the thresholds between different levels of embellishments. For the purpose of my thesis work, my research addresses how various levels of visual embellishments affect participants' perceived enjoyment of exercise media and how embellishments affect participants’ motivation to exercise. It aims to explore the overall implications of juicy game design in an exercise game setting. To accomplish this I conducted a detailed survey study with three different levels of juicy design - High, Medium and Low, using the exergame Sphery Racer as a basis for the graphics. Participants (N=100) were recruited from Prolific in which I administered the PANAS, Godin Leisure-Time Exercise Questionnaire, and a comparison task on Qualtrics. Through my statistical analysis, my results show enjoyment of media is heavily tied to whether or not there is any presence of embellishment however once a certain embellishment threshold is passed enjoyment does not continue to increase. In some cases, less visually embellished stimuli are favourable as an encouragement to work out more frequently, however, result in an overall more boring and lacklustre experience. Through these findings, I was able to validate previous research and add additional insight to the field of exergame design
    • 

    corecore