8,805 research outputs found

    Individual differences in aesthetic preferences for multi-sensorial stimulation

    Get PDF
    The aim of the current project was to investigate aesthetics in multi-sensorial stimulation and to explore individual differences in the process. We measured the aesthetics of Interactive Objects (IOs) which are three-dimensional objects with electronic components that exhibit an autonomous behaviour when handled: e.g., vibrating, playing a sound, or lighting-up. The Q-sorting procedure of Q-methodology was applied. Data were analysed by following the Qmulti protocol. The results suggested that overall participants preferred IOs that (i) vibrate, (ii) have rough surface texture, and (iii) are round. No particular preference emerged about the size of the IOs. When making aesthetic judgment, participants paid more attention to the behaviour variable of the IOs than the size, contour or surface texture. In addition, three clusters of participants were identified, suggesting that individual differences existed in the aesthetics of IOs. Without proper consideration of potential individual differences, aesthetic scholars may face the risk of having significant effects masked by individual differences. Only by paying attention to this issue can more meaningful findings be generated to contribute to the field of aesthetics

    EcoGIS – GIS tools for ecosystem approaches to fisheries management

    Get PDF
    Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.

    Automatic Hyperparameter Tuning Method for Local Outlier Factor, with Applications to Anomaly Detection

    Full text link
    In recent years, there have been many practical applications of anomaly detection such as in predictive maintenance, detection of credit fraud, network intrusion, and system failure. The goal of anomaly detection is to identify in the test data anomalous behaviors that are either rare or unseen in the training data. This is a common goal in predictive maintenance, which aims to forecast the imminent faults of an appliance given abundant samples of normal behaviors. Local outlier factor (LOF) is one of the state-of-the-art models used for anomaly detection, but the predictive performance of LOF depends greatly on the selection of hyperparameters. In this paper, we propose a novel, heuristic methodology to tune the hyperparameters in LOF. A tuned LOF model that uses the proposed method shows good predictive performance in both simulations and real data sets.Comment: 15 pages, 5 figure

    ScotMap : Participatory mapping of inshore fishing activity to inform marine spatial planning in Scotland

    Get PDF
    Acknowledgements The authors would like to thank all the fishermen interviewed who gave freely of their time, fisheries compliance staff, government scientists, contractors and fishing industry representatives for their heroic efforts conducting interviews. Furthermore, the authors would like to thank all the staff in Marine Scotland who staffed the data verification workshops. Lastly, the authors would also like to thank colleagues Gareth Jones, Robert Watret, and Liam Mason for their advice and support during the project. Marine Scotland has financially supported the data collection and conduct of research, as well as preparation and publishing of this article. The writing of this manuscript was also supported by the “Marine Collaboration Research Forum” writing retreat co-funded by Marine Scotland and the University of Aberdeen which took place in November 2015.Peer reviewedPublisher PD

    From buildings to cities: techniques for the multi-scale analysis of urban form and function

    Get PDF
    The built environment is a significant factor in many urban processes, yet direct measures of built form are seldom used in geographical studies. Representation and analysis of urban form and function could provide new insights and improve the evidence base for research. So far progress has been slow due to limited data availability, computational demands, and a lack of methods to integrate built environment data with aggregate geographical analysis. Spatial data and computational improvements are overcoming some of these problems, but there remains a need for techniques to process and aggregate urban form data. Here we develop a Built Environment Model of urban function and dwelling type classifications for Greater London, based on detailed topographic and address-based data (sourced from Ordnance Survey MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function and residential type analysis, where both local-scale urban clustering and city-wide trends in density and agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in commercial function data and problems with temporal attribution. These limitations currently restrict the more advanced applications of the Built Environment Model
    • …
    corecore