4,527 research outputs found

    Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data

    Full text link
    There are threefold challenges in emotion recognition. First, it is difficult to recognize human's emotional states only considering a single modality. Second, it is expensive to manually annotate the emotional data. Third, emotional data often suffers from missing modalities due to unforeseeable sensor malfunction or configuration issues. In this paper, we address all these problems under a novel multi-view deep generative framework. Specifically, we propose to model the statistical relationships of multi-modality emotional data using multiple modality-specific generative networks with a shared latent space. By imposing a Gaussian mixture assumption on the posterior approximation of the shared latent variables, our framework can learn the joint deep representation from multiple modalities and evaluate the importance of each modality simultaneously. To solve the labeled-data-scarcity problem, we extend our multi-view model to semi-supervised learning scenario by casting the semi-supervised classification problem as a specialized missing data imputation task. To address the missing-modality problem, we further extend our semi-supervised multi-view model to deal with incomplete data, where a missing view is treated as a latent variable and integrated out during inference. This way, the proposed overall framework can utilize all available (both labeled and unlabeled, as well as both complete and incomplete) data to improve its generalization ability. The experiments conducted on two real multi-modal emotion datasets demonstrated the superiority of our framework.Comment: arXiv admin note: text overlap with arXiv:1704.07548, 2018 ACM Multimedia Conference (MM'18

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Missing Modality meets Meta Sampling (M3S): An Efficient Universal Approach for Multimodal Sentiment Analysis with Missing Modality

    Full text link
    Multimodal sentiment analysis (MSA) is an important way of observing mental activities with the help of data captured from multiple modalities. However, due to the recording or transmission error, some modalities may include incomplete data. Most existing works that address missing modalities usually assume a particular modality is completely missing and seldom consider a mixture of missing across multiple modalities. In this paper, we propose a simple yet effective meta-sampling approach for multimodal sentiment analysis with missing modalities, namely Missing Modality-based Meta Sampling (M3S). To be specific, M3S formulates a missing modality sampling strategy into the modal agnostic meta-learning (MAML) framework. M3S can be treated as an efficient add-on training component on existing models and significantly improve their performances on multimodal data with a mixture of missing modalities. We conduct experiments on IEMOCAP, SIMS and CMU-MOSI datasets, and superior performance is achieved compared with recent state-of-the-art methods

    Multimodal Sentiment Analysis: A Survey

    Full text link
    Multimodal sentiment analysis has become an important research area in the field of artificial intelligence. With the latest advances in deep learning, this technology has reached new heights. It has great potential for both application and research, making it a popular research topic. This review provides an overview of the definition, background, and development of multimodal sentiment analysis. It also covers recent datasets and advanced models, emphasizing the challenges and future prospects of this technology. Finally, it looks ahead to future research directions. It should be noted that this review provides constructive suggestions for promising research directions and building better performing multimodal sentiment analysis models, which can help researchers in this field.Comment: It needs to be returned for major modification

    Transformer-based Self-supervised Multimodal Representation Learning for Wearable Emotion Recognition

    Full text link
    Recently, wearable emotion recognition based on peripheral physiological signals has drawn massive attention due to its less invasive nature and its applicability in real-life scenarios. However, how to effectively fuse multimodal data remains a challenging problem. Moreover, traditional fully-supervised based approaches suffer from overfitting given limited labeled data. To address the above issues, we propose a novel self-supervised learning (SSL) framework for wearable emotion recognition, where efficient multimodal fusion is realized with temporal convolution-based modality-specific encoders and a transformer-based shared encoder, capturing both intra-modal and inter-modal correlations. Extensive unlabeled data is automatically assigned labels by five signal transforms, and the proposed SSL model is pre-trained with signal transformation recognition as a pretext task, allowing the extraction of generalized multimodal representations for emotion-related downstream tasks. For evaluation, the proposed SSL model was first pre-trained on a large-scale self-collected physiological dataset and the resulting encoder was subsequently frozen or fine-tuned on three public supervised emotion recognition datasets. Ultimately, our SSL-based method achieved state-of-the-art results in various emotion classification tasks. Meanwhile, the proposed model proved to be more accurate and robust compared to fully-supervised methods on low data regimes.Comment: Accepted IEEE Transactions On Affective Computin

    Evaluating Temporal Patterns in Applied Infant Affect Recognition

    Full text link
    Agents must monitor their partners' affective states continuously in order to understand and engage in social interactions. However, methods for evaluating affect recognition do not account for changes in classification performance that may occur during occlusions or transitions between affective states. This paper addresses temporal patterns in affect classification performance in the context of an infant-robot interaction, where infants' affective states contribute to their ability to participate in a therapeutic leg movement activity. To support robustness to facial occlusions in video recordings, we trained infant affect recognition classifiers using both facial and body features. Next, we conducted an in-depth analysis of our best-performing models to evaluate how performance changed over time as the models encountered missing data and changing infant affect. During time windows when features were extracted with high confidence, a unimodal model trained on facial features achieved the same optimal performance as multimodal models trained on both facial and body features. However, multimodal models outperformed unimodal models when evaluated on the entire dataset. Additionally, model performance was weakest when predicting an affective state transition and improved after multiple predictions of the same affective state. These findings emphasize the benefits of incorporating body features in continuous affect recognition for infants. Our work highlights the importance of evaluating variability in model performance both over time and in the presence of missing data when applying affect recognition to social interactions.Comment: 8 pages, 6 figures, 10th International Conference on Affective Computing and Intelligent Interaction (ACII 2022
    • …
    corecore