19 research outputs found

    Reasoning under fuzzy vagueness and probabilistic uncertainty in the Semantic Web

    Get PDF
    Combining data from many different sources or from sources that are not entirely trusted brings challenges to the automated processing of such data. Knowledge presented in natural language is another challenge for computing. In the semantic web, many applications such as personal agents need to be able to manage multiple kinds of uncertainty. There are two main approaches to modeling uncertainty in the literature - fuzzy and probabilistic. These approaches model semantically different types of uncertainty. This paper focuses on approaches that combine both fuzzy and probabilistic reasoning in one framework to provide automated agents the capability to deal with both types of uncertainty

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF

    A Dempster-Shafer theory inspired logic

    Get PDF
    Issues of formalising and interpreting epistemic uncertainty have always played a prominent role in Artificial Intelligence. The Dempster-Shafer (DS) theory of partial beliefs is one of the most-well known formalisms to address the partial knowledge. Similarly to the DS theory, which is a generalisation of the classical probability theory, fuzzy logic provides an alternative reasoning apparatus as compared to Boolean logic. Both theories are featured prominently within the Artificial Intelligence domain, but the unified framework accounting for all the aspects of imprecise knowledge is yet to be developed. Fuzzy logic apparatus is often used for reasoning based on vague information, and the beliefs are often processed with the aid of Boolean logic. The situation clearly calls for the development of a logic formalism targeted specifically for the needs of the theory of beliefs. Several frameworks exist based on interpreting epistemic uncertainty through an appropriately defined modal operator. There is an epistemic problem with this kind of frameworks: while addressing uncertain information, they also allow for non-constructive proofs, and in this sense the number of true statements within these frameworks is too large. In this work, it is argued that an inferential apparatus for the theory of beliefs should follow premises of Brouwer's intuitionism. A logic refuting tertium non daturìs constructed by defining a correspondence between the support functions representing beliefs in the DS theory and semantic models based on intuitionistic Kripke models with weighted nodes. Without addional constraints on the semantic models and without modal operators, the constructed logic is equivalent to the minimal intuitionistic logic. A number of possible constraints is considered resulting in additional axioms and making the proposed logic intermediate. Further analysis of the properties of the created framework shows that the approach preserves the Dempster-Shafer belief assignments and thus expresses modality through the belief assignments of the formulae within the developed logic.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Fuzzy expert systems in civil engineering

    Get PDF
    Imperial Users onl

    Conceptual Modelling, Combinatorial Heuristics and Ars Inveniendi: An Epistemological History

    Get PDF
    (1) An introduction to the principles of conceptual modelling, combinatorial heuristics and epistemological history; (2) the examination of a number of perennial epistemological-methodological schemata: conceptual spaces and blending theory; ars inveniendi and ars demonstrandi; the two modes of analysis and synthesis and their relationship to ars inveniendi; taxonomies and typologies as two fundamental epistemic structures; extended cognition, symbolic systems and model-based reasoning

    Models, Simulations, and the Reduction of Complexity

    Get PDF
    Modern science is a model-building activity. But how are models contructed? How are they related to theories and data? How do they explain complex scientific phenomena, and which role do computer simulations play? To address these questions which are highly relevant to scientists as well as to philosophers of science, 8 leading natural, engineering and social scientists reflect upon their modeling work, and 8 philosophers provide a commentary

    Models, Simulations, and the Reduction of Complexity

    Get PDF
    Modern science is a model-building activity. But how are models contructed? How are they related to theories and data? How do they explain complex scientific phenomena, and which role do computer simulations play? To address these questions which are highly relevant to scientists as well as to philosophers of science, 8 leading natural, engineering and social scientists reflect upon their modeling work, and 8 philosophers provide a commentary
    corecore