37 research outputs found

    Many-Core Architectures: Hardware-Software Optimization and Modeling Techniques

    Get PDF
    During the last few decades an unprecedented technological growth has been at the center of the embedded systems design paramount, with Moore’s Law being the leading factor of this trend. Today in fact an ever increasing number of cores can be integrated on the same die, marking the transition from state-of-the-art multi-core chips to the new many-core design paradigm. Despite the extraordinarily high computing power, the complexity of many-core chips opens the door to several challenges. As a result of the increased silicon density of modern Systems-on-a-Chip (SoC), the design space exploration needed to find the best design has exploded and hardware designers are in fact facing the problem of a huge design space. Virtual Platforms have always been used to enable hardware-software co-design, but today they are facing with the huge complexity of both hardware and software systems. In this thesis two different research works on Virtual Platforms are presented: the first one is intended for the hardware developer, to easily allow complex cycle accurate simulations of many-core SoCs. The second work exploits the parallel computing power of off-the-shelf General Purpose Graphics Processing Units (GPGPUs), with the goal of an increased simulation speed. The term Virtualization can be used in the context of many-core systems not only to refer to the aforementioned hardware emulation tools (Virtual Platforms), but also for two other main purposes: 1) to help the programmer to achieve the maximum possible performance of an application, by hiding the complexity of the underlying hardware. 2) to efficiently exploit the high parallel hardware of many-core chips in environments with multiple active Virtual Machines. This thesis is focused on virtualization techniques with the goal to mitigate, and overtake when possible, some of the challenges introduced by the many-core design paradigm

    Memory hierarchies for future HPC architectures

    Get PDF
    Efficiently managing the memory subsystem of modern multi/manycore architectures is increasingly becoming a challenge as systems grow in complexity and heterogeneity. In the field of high performance computing (HPC) in particular, where massively parallel architectures are used and input sets of several terabytes are common, careful management of the memory hierarchy is crucial to exploit the full computing power of these systems. The goal of this thesis is to provide computer architects with valuable information to guide the design of future systems, and in particular of those more widely used in the field of HPC, i.e., symmetric multicore processors (SMPs) and GPUs. With that aim, we present an analysis of some of the inefficiencies and shortcomings of current memory management techniques and propose two novel schemes leveraging the opportunities that arise from the use of new and emerging programming models and computing paradigms. The first contribution of this thesis is a block prefetching mechanism for task-based programming models. Using a task-based programming model simplifies parallel programming and allows for better resource utilization in the supercomputers used in the field of HPC, while enabling sophisticated memory management techniques. The scheme proposed relies on a memory-aware runtime system to guide prefetching while avoiding the main drawbacks of traditional prefetching mechanisms, i.e., cache pollution and lack of timeliness. It leverages the information provided by the user about tasks¿ input data to prefetch contiguous blocks of memory that are certain to be useful. The proposed scheme targets SMPs with large cache hierarchies and uses heuristics to dynamically decide the best cache level to prefetch into without evicting useful data. The focus of this thesis then turns to heterogeneous architectures combining GPUs and traditional multicore processors. The current trend towards tighter coupling of GPU and CPU enables new collaborative computations that tax the memory subsystem in a different manner than previous heterogeneous computations did, and requires careful analysis to understand the trade-offs that are to be expected when designing future memory organizations. The second contribution is an in-depth analysis on the impact of sharing the last-level cache between GPU and CPU cores on a system where the GPU is integrated on the same die as the CPU. The analysis focuses on the effect that a shared cache can have on collaborative computations where GPU and CPU threads concurrently work on a problem and share data at fine granularities. The results presented here show that sharing the last-level cache is largely beneficial as it allows for better resource utilization. In addition, the evaluation shows that collaborative computations benefit significantly from the faster CPU-GPU communication and higher cache hit rates that a shared cache level provides. The final contribution of this thesis analyzes the inefficiencies and drawbacks of demand paging as currently implemented in discrete GPUs by NVIDIA. Then, it proposes a novel memory organization and dynamic migration scheme that allows for efficient data sharing between GPU and CPU, specially when executing collaborative computations where data is migrated back and forth between the two separate memories. This scheme migrates data at cache line granularities transparently to the user and operating system, avoiding false sharing and the unnecessary data transfers that occur with demand paging. The results show that the proposed scheme is able to outperform the baseline system by reducing the migration latency of data that is copied multiple times between the two memories. In addition, analysis of different interconnect latencies shows that fine-grained data sharing between GPU and CPU is feasible as long as future interconnect technologies achieve four to five times lower round-trip times than PCI-Express 3.0.La gestión eficiente del subsistema de memoria se ha convertido en un problema complejo a la vez que los sistemas crecen en complejidad y heterogeneidad. En el campo de la computación de altas prestaciones (HPC) en particular, donde arquitecturas masivamente paralelas son usadas y entradas de varios terabytes son comunes, una gestión cuidadosa de la jerarquía de memoria es crucial para conseguir explotar todo el potencial de estas arquitecturas. El objetivo de esta tesis es proporcionar a los arquitectos de computadores información valiosa para el diseño de los sistemas del futuro, y en concreto de los más comúnmente usados en el campo de HPC, los procesadores multinúcleo simétricos (SMP) y las tarjetas gráficas (GPU). Para ello, presentamos un análisis de las ineficiencias y los inconvenientes de los sistemas de gestión de memoria actuales, y proponemos dos técnicas nuevas que aprovechan las oportunidades surgidas del uso de nuevos y emergentes modelos de programación y paradigmas de computación. La primera contribución de esta tesis es un mecanismo de prefetch de bloques para modelos de programación basados en tareas. Usando modelos de programación orientados a tareas simplifica la programación paralela y permite hacer un mejor uso de los recursos en los supercomputadores usados en HPC, mientras permiten el uso de sofisticados mecanismos de gestión de memoria. La técnica propuesta se basa en un sistema de runtime para guiar el prefetch de datos mientras evita los principales inconvenientes tradicionalmente asociados con prefetching, la polución de cache y la medida incorrecta de los tiempos. El mecanismo utiliza la información sobre las entradas de las tareas proporcionada por el usuario para prefetchear bloques contiguos de memoria sobre los que hay certeza que serán utilizados. El mecanismo está dirigido a arquitecturas SMP con amplias jerarquías de cache, y usa heurísticas para decidir dinámicamente en qué nivel de caché colocar los datos sin desplazar datos útiles. El focus de la tesis gira luego a arquitecturas heterogéneas que combinan GPUs con procesadores multinúcleo tradicionales. La actual tendencia a unir GPU y CPU permite el uso de una nueva serie de computaciones colaborativas que afectan al subsistema de memoria de forma diferente que las computaciones heterogéneas anteriores, y requiere de un cuidadoso análisis para entender las consecuencias que esto tiene en el diseño de las organizaciones de memoria futuras. La segunda contribución de la tesis es un análisis detallado del impacto que supone compartir el último nivel de cache entre núcleos de GPU y CPU en sistemas donde la GPU está integrada en el mismo chip que la CPU. El análisis se centra en el efecto que la cache compartida tiene en colaboraciones colaborativas donde hilos de GPU y CPU trabajan concurrentemente en un problema y comparten datos a grano fino. Los resultados presentados en esta tesis muestran que compartir el último nivel de cache es mayormente beneficioso ya que permite un mejor uso de los recursos. Además, la evaluación muestra que las computaciones colaborativas se benefician en gran medida de la comunicación más rápida entre GPU y CPU y las mayores tasas de acierto de cache que un nivel de cache compartido proporcionan

    CAESAR: coherence-aided elective and seamless alternative routing via on-chip FPGA

    Full text link
    Prompted by the ever-growing demand for high-performance System-on-Chip (SoC) and the plateauing of CPU frequencies, the SoC design landscape is shifting. In a quest to offer programmable specialization, the adoption of tightly-coupled FPGAs co-located with traditional compute clusters has been embraced by major vendors. This CPU+FPGA architectural paradigm opens the door to novel hardware/software co-design opportunities. The key principle is that CPU-originated memory traffic can be re-routed through the FPGA for analysis and management purposes. Albeit promising, the side-effect of this approach is that time-critical operations—such as cache-line refills—are fulfilled by moving data over slower interconnects meant for I/O traffic. In this article, we introduce a novel principle named Cache Coherence Backstabbing to precisely tackle these shortcomings. The technique leverages the ability to include the FGPA in the same coherence domain as the core processing elements. Importantly, this enables Coherence-Aided Elective and Seamless Alternative Routing (CAESAR), i.e., seamless inspection and routing of memory transactions, especially cache-line refills, through the FPGA. CAESAR allows the definition of new memory programming paradigms. We discuss the intrinsic potentials of the approach and evaluate it with a full-stack prototype implementation on a commercial platform. Our experiments show an improvement of up to 29% in read bandwidth, 23% in latency, and 13% in pragmatic workloads over the state of the art. Furthermore, we showcase the first in-coherence-domain run-time profiler design as a use-case of the CAESAR approach.National Science FoundationAccepted manuscrip

    Master of Science

    Get PDF
    thesisEfficient movement of massive amounts of data over high-speed networks at high throughput is essential for a modern-day in-memory storage system. In response to the growing needs of throughput and latency demands at scale, a new class of database systems was developed in recent years. The development of these systems was guided by increased access to high throughput, low latency network fabrics, and declining cost of Dynamic Random Access Memory (DRAM). These systems were designed with On-Line Transactional Processing (OLTP) workloads in mind, and, as a result, are optimized for fast dispatch and perform well under small request-response scenarios. However, massive server responses such as those for range queries and data migration for load balancing poses challenges for this design. This thesis analyzes the effects of large transfers on scale-out systems through the lens of a modern Network Interface Card (NIC). The present-day NIC offers new and exciting opportunities and challenges for large transfers, but using them efficiently requires smart data layout and concurrency control. We evaluated the impact of modern NICs in designing data layout by measuring transmit performance and full system impact by observing the effects of Direct Memory Access (DMA), Remote Direct Memory Access (RDMA), and caching improvements such as Intel® Data Direct I/O (DDIO). We discovered that use of techniques such as Zero Copy yield around 25% savings in CPU cycles and a 50% reduction in the memory bandwidth utilization on a server by using a client-assisted design with records that are not updated in place. We also set up experiments that underlined the bottlenecks in the current approach to data migration in RAMCloud and propose guidelines for a fast and efficient migration protocol for RAMCloud

    Simulating and analyzing commercial workloads and computer systems

    Get PDF

    A data dependency recovery system for a heterogeneous multicore processor

    Get PDF
    Multicore processors often increase the performance of applications. However, with their deeper pipelining, they have proven increasingly difficult to improve. In an attempt to deliver enhanced performance at lower power requirements, semiconductor microprocessor manufacturers have progressively utilised chip-multicore processors. Existing research has utilised a very common technique known as thread-level speculation. This technique attempts to compute results before the actual result is known. However, thread-level speculation impacts operation latency, circuit timing, confounds data cache behaviour and code generation in the compiler. We describe an software framework codenamed Lyuba that handles low-level data hazards and automatically recovers the application from data hazards without programmer and speculation intervention for an asymmetric chip-multicore processor. The problem of determining correct execution of multiple threads when data hazards occur on conventional symmetrical chip-multicore processors is a significant and on-going challenge. However, there has been very little focus on the use of asymmetrical (heterogeneous) processors with applications that have complex data dependencies. The purpose of this thesis is to: (i) define the development of a software framework for an asymmetric (heterogeneous) chip-multicore processor; (ii) present an optimal software control of hardware for distributed processing and recovery from violations;(iii) provides performance results of five applications using three datasets. Applications with a small dataset showed an improvement of 17% and a larger dataset showed an improvement of 16% giving overall 11% improvement in performance

    Leveraging performance of 3D finite difference schemes in large scientific computing simulations

    Get PDF
    Gone are the days when engineers and scientists conducted most of their experiments empirically. During these decades, actual tests were carried out in order to assess the robustness and reliability of forthcoming product designs and prove theoretical models. With the advent of the computational era, scientific computing has definetely become a feasible solution compared with empirical methods, in terms of effort, cost and reliability. Large and massively parallel computational resources have reduced the simulation execution times and have improved their numerical results due to the refinement of the sampled domain. Several numerical methods coexist for solving the Partial Differential Equations (PDEs). Methods such as the Finite Element (FE) and the Finite Volume (FV) are specially well suited for dealing with problems where unstructured meshes are frequent. Unfortunately, this flexibility is not bestowed for free. These schemes entail higher memory latencies due to the handling of irregular data accesses. Conversely, the Finite Difference (FD) scheme has shown to be an efficient solution for problems where the structured meshes suit the domain requirements. Many scientific areas use this scheme due to its higher performance. This thesis focuses on improving FD schemes to leverage the performance of large scientific computing simulations. Different techniques are proposed such as the Semi-stencil, a novel algorithm that increases the FLOP/Byte ratio for medium- and high-order stencils operators by reducing the accesses and endorsing data reuse. The algorithm is orthogonal and can be combined with techniques such as spatial- or time-blocking, adding further improvement. New trends on Symmetric Multi-Processing (SMP) systems -where tens of cores are replicated on the same die- pose new challenges due to the exacerbation of the memory wall problem. In order to alleviate this issue, our research is focused on different strategies to reduce pressure on the cache hierarchy, particularly when different threads are sharing resources due to Simultaneous Multi-Threading (SMT). Several domain decomposition schedulers for work-load balance are introduced ensuring quasi-optimal results without jeopardizing the overall performance. We combine these schedulers with spatial-blocking and auto-tuning techniques, exploring the parametric space and reducing misses in last level cache. As alternative to brute-force methods used in auto-tuning, where a huge parametric space must be traversed to find a suboptimal candidate, performance models are a feasible solution. Performance models can predict the performance on different architectures, selecting suboptimal parameters almost instantly. In this thesis, we devise a flexible and extensible performance model for stencils. The proposed model is capable of supporting multi- and many-core architectures including complex features such as hardware prefetchers, SMT context and algorithmic optimizations. Our model can be used not only to forecast execution time, but also to make decisions about the best algorithmic parameters. Moreover, it can be included in run-time optimizers to decide the best SMT configuration based on the execution environment. Some industries rely heavily on FD-based techniques for their codes. Nevertheless, many cumbersome aspects arising in industry are still scarcely considered in academia research. In this regard, we have collaborated in the implementation of a FD framework which covers the most important features that an HPC industrial application must include. Some of the node-level optimization techniques devised in this thesis have been included into the framework in order to contribute in the overall application performance. We show results for a couple of strategic applications in industry: an atmospheric transport model that simulates the dispersal of volcanic ash and a seismic imaging model used in Oil & Gas industry to identify hydrocarbon-rich reservoirs.Atrás quedaron los días en los que ingenieros y científicos realizaban sus experimentos empíricamente. Durante esas décadas, se llevaban a cabo ensayos reales para verificar la robustez y fiabilidad de productos venideros y probar modelos teóricos. Con la llegada de la era computacional, la computación científica se ha convertido en una solución factible comparada con métodos empíricos, en términos de esfuerzo, coste y fiabilidad. Los supercomputadores han reducido el tiempo de las simulaciones y han mejorado los resultados numéricos gracias al refinamiento del dominio. Diversos métodos numéricos coexisten para resolver las Ecuaciones Diferenciales Parciales (EDPs). Métodos como Elementos Finitos (EF) y Volúmenes Finitos (VF) están bien adaptados para tratar problemas donde las mallas no estructuradas son frecuentes. Desafortunadamente, esta flexibilidad no se confiere de forma gratuita. Estos esquemas conllevan latencias más altas debido al acceso irregular de datos. En cambio, el esquema de Diferencias Finitas (DF) ha demostrado ser una solución eficiente cuando las mallas estructuradas se adaptan a los requerimientos. Esta tesis se enfoca en mejorar los esquemas DF para impulsar el rendimiento de las simulaciones en la computación científica. Se proponen diferentes técnicas, como el Semi-stencil, un nuevo algoritmo que incrementa el ratio de FLOP/Byte para operadores de stencil de orden medio y alto reduciendo los accesos y promoviendo el reuso de datos. El algoritmo es ortogonal y puede ser combinado con técnicas como spatial- o time-blocking, añadiendo mejoras adicionales. Las nuevas tendencias hacia sistemas con procesadores multi-simétricos (SMP) -donde decenas de cores son replicados en el mismo procesador- plantean nuevos retos debido a la exacerbación del problema del ancho de memoria. Para paliar este problema, nuestra investigación se centra en estrategias para reducir la presión en la jerarquía de cache, particularmente cuando diversos threads comparten recursos debido a Simultaneous Multi-Threading (SMT). Introducimos diversos planificadores de descomposición de dominios para balancear la carga asegurando resultados casi óptimos sin poner en riesgo el rendimiento global. Combinamos estos planificadores con técnicas de spatial-blocking y auto-tuning, explorando el espacio paramétrico y reduciendo los fallos en la cache de último nivel. Como alternativa a los métodos de fuerza bruta usados en auto-tuning donde un espacio paramétrico se debe recorrer para encontrar un candidato, los modelos de rendimiento son una solución factible. Los modelos de rendimiento pueden predecir el rendimiento en diferentes arquitecturas, seleccionando parámetros suboptimos casi de forma instantánea. En esta tesis, ideamos un modelo de rendimiento para stencils flexible y extensible. El modelo es capaz de soportar arquitecturas multi-core incluyendo características complejas como prefetchers, SMT y optimizaciones algorítmicas. Nuestro modelo puede ser usado no solo para predecir los tiempos de ejecución, sino también para tomar decisiones de los mejores parámetros algorítmicos. Además, puede ser incluido en optimizadores run-time para decidir la mejor configuración SMT. Algunas industrias confían en técnicas DF para sus códigos. Sin embargo, no todos los aspectos que aparecen en la industria han sido sometidos a investigación. En este aspecto, hemos diseñado e implementado desde cero una infraestructura DF que cubre las características más importantes que una aplicación industrial debe incluir. Algunas de las técnicas de optimización propuestas en esta tesis han sido incluidas para contribuir en el rendimiento global a nivel industrial. Mostramos resultados de un par de aplicaciones estratégicas para la industria: un modelo de transporte atmosférico que simula la dispersión de ceniza volcánica y un modelo de imagen sísmica usado en la industria del petroleo y gas para identificar reservas ricas en hidrocarburo

    Doctor of Philosophy

    Get PDF
    dissertationIn recent years, a number of trends have started to emerge, both in microprocessor and application characteristics. As per Moore's law, the number of cores on chip will keep doubling every 18-24 months. International Technology Roadmap for Semiconductors (ITRS) reports that wires will continue to scale poorly, exacerbating the cost of on-chip communication. Cores will have to navigate an on-chip network to access data that may be scattered across many cache banks. The number of pins on the package, and hence available off-chip bandwidth, will at best increase at sublinear rate and at worst, stagnate. A number of disruptive memory technologies, e.g., phase change memory (PCM) have begun to emerge and will be integrated into the memory hierarchy sooner than later, leading to non-uniform memory access (NUMA) hierarchies. This will make the cost of accessing main memory even higher. In previous years, most of the focus has been on deciding the memory hierarchy level where data must be placed (L1 or L2 caches, main memory, disk, etc.). However, in modern and future generations, each level is getting bigger and its design is being subjected to a number of constraints (wire delays, power budget, etc.). It is becoming very important to make an intelligent decision about where data must be placed within a level. For example, in a large non-uniform access cache (NUCA), we must figure out the optimal bank. Similarly, in a multi-dual inline memory module (DIMM) non uniform memory access (NUMA) main memory, we must figure out the DIMM that is the optimal home for every data page. Studies have indicated that heterogeneous main memory hierarchies that incorporate multiple memory technologies are on the horizon. We must develop solutions for data management that take heterogeneity into account. For these memory organizations, we must again identify the appropriate home for data. In this dissertation, we attempt to verify the following thesis statement: "Can low-complexity hardware and OS mechanisms manage data placement within each memory hierarchy level to optimize metrics such as performance and/or throughput?" In this dissertation we argue for a hardware-software codesign approach to tackle the above mentioned problems at different levels of the memory hierarchy. The proposed methods utilize techniques like page coloring and shadow addresses and are able to handle a large number of problems ranging from managing wire-delays in large, shared NUCA caches to distributing shared capacity among different cores. We then examine data-placement issues in NUMA main memory for a many-core processor with a moderate number of on-chip memory controllers. Using codesign approaches, we achieve efficient data placement by modifying the operating system's (OS) page allocation algorithm for a wide variety of main memory architectures

    3rd Many-core Applications Research Community (MARC) Symposium. (KIT Scientific Reports ; 7598)

    Get PDF
    This manuscript includes recent scientific work regarding the Intel Single Chip Cloud computer and describes approaches for novel approaches for programming and run-time organization

    Piattaforme multicore e integrazione tri-dimensionale: analisi architetturale e ottimizzazione

    Get PDF
    Modern embedded systems embrace many-core shared-memory designs. Due to constrained power and area budgets, most of them feature software-managed scratchpad memories instead of data caches to increase the data locality. It is therefore programmers’ responsibility to explicitly manage the memory transfers, and this make programming these platform cumbersome. Moreover, complex modern applications must be adequately parallelized before they can the parallel potential of the platform into actual performance. To support this, programming languages were proposed, which work at a high level of abstraction, and rely on a runtime whose cost hinders performance, especially in embedded systems, where resources and power budget are constrained. This dissertation explores the applicability of the shared-memory paradigm on modern many-core systems, focusing on the ease-of-programming. It focuses on OpenMP, the de-facto standard for shared memory programming. In a first part, the cost of algorithms for synchronization and data partitioning are analyzed, and they are adapted to modern embedded many-cores. Then, the original design of an OpenMP runtime library is presented, which supports complex forms of parallelism such as multi-level and irregular parallelism. In the second part of the thesis, the focus is on heterogeneous systems, where hardware accelerators are coupled to (many-)cores to implement key functional kernels with orders-of-magnitude of speedup and energy efficiency compared to the “pure software” version. However, three main issues rise, namely i) platform design complexity, ii) architectural scalability and iii) programmability. To tackle them, a template for a generic hardware processing unit (HWPU) is proposed, which share the memory banks with cores, and the template for a scalable architecture is shown, which integrates them through the shared-memory system. Then, a full software stack and toolchain are developed to support platform design and to let programmers exploiting the accelerators of the platform. The OpenMP frontend is extended to interact with it.I sistemi integrati moderni sono architetture many-core, in cui spesso lo spazio di memoria è condiviso fra i processori. Per ridurre i consumi, molte di queste architetture sostituiscono le cache dati con memorie scratchpad gestite in software, per massimizzarne la località alle CPU e aumentare le performance. Questo significa che i dati devono essere spostati manualmente da parte del programmatore. Inoltre, tradurre in perfomance l’enorme parallelismo potenziale delle piattaforme many-core non è semplice. Per supportare la programmazione, diversi programming model sono stati proposti, e siccome lavorano ad un alto livello di astrazione, sfruttano delle librerie di runtime che forniscono servizi di base quali sincronizzazione, allocazione della memoria, threading. Queste librerie hanno un costo, che nei sistemi integrati è troppo elevato e ostacola il raggiungimento delle piene performance. Questa tesi analizza come un programming model ad alto livello di astrazione – OpenMP – possa essere efficientemente supportato, se il suo stack software viene adattato per sfruttare al meglio la piattaforma sottostante. In una prima parte, studio diversi meccanismi di sincronizzazione e comunicazione fra thread paralleli, portati sulle piattaforme many-core. In seguito, li utilizzo per scrivere un runtime di supporto a OpenMP che sia il più possibile efficente e “leggero” e che supporti paradigmi di parallelismo multi-livello e irregolare, spesso presenti nelle applicazioni moderne. Una seconda parte della tesi esplora le architetture eterogenee, ossia con acceleratori hardware. Queste architetture soffrono di problematiche sia i) per il processo di design della piattaforma, che ii) di scalabilità della piattaforma stessa (aumento del numero degli acceleratori e dei processori), che iii) di programmabilità. La tesi propone delle soluzioni a tutti e tre i problemi. Il linguaggio di programmazione usato è OpenMP, sia per la sua grande espressività a livello semantico, sia perché è lo standard de-facto per programmare sistemi a memoria condivisa
    corecore