2,463 research outputs found

    Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

    Full text link
    Detection transformers have recently shown promising object detection results and attracted increasing attention. However, how to develop effective domain adaptation techniques to improve its cross-domain performance remains unexplored and unclear. In this paper, we delve into this topic and empirically find that direct feature distribution alignment on the CNN backbone only brings limited improvements, as it does not guarantee domain-invariant sequence features in the transformer for prediction. To address this issue, we propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers. Technically, SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module. In DQFA, a novel domain query is used to aggregate and align global context from the token sequence of both domains. DQFA reduces the domain discrepancy in global feature representations and object relations when deploying in the transformer encoder and decoder, respectively. Meanwhile, TDA aligns token features in the sequence from both domains, which reduces the domain gaps in local and instance-level feature representations in the transformer encoder and decoder, respectively. Besides, a novel bipartite matching consistency loss is proposed to enhance the feature discriminability for robust object detection. Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods. Code has been made available at: https://github.com/encounter1997/SFA.Comment: Fix a typo in Eq. 1

    Unsupervised Cross-domain Pulmonary Nodule Detection without Source Data

    Full text link
    Cross domain pulmonary nodule detection suffers from performance degradation due to large shift of data distributions between the source and target domain. Besides, considering the high cost of medical data annotation, it is often assumed that the target images are unlabeled. Existing approaches have made much progress for this unsupervised domain adaptation setting. However, this setting is still rarely plausible in the medical application since the source medical data are often not accessible due to the privacy concerns. This motivates us to propose a Source-free Unsupervised cross-domain method for Pulmonary nodule detection (SUP). It first adapts the source model to the target domain by utilizing instance-level contrastive learning. Then the adapted model is trained in a teacher-student interaction manner, and a weighted entropy loss is incorporated to further improve the accuracy. Extensive experiments by adapting a pre-trained source model to three popular pulmonary nodule datasets demonstrate the effectiveness of our method

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher

    Full text link
    Adapting visual object detectors to operational target domains is a challenging task, commonly achieved using unsupervised domain adaptation (UDA) methods. When the labeled dataset is coming from multiple source domains, treating them as separate domains and performing a multi-source domain adaptation (MSDA) improves the accuracy and robustness over mixing these source domains and performing a UDA, as observed by recent studies in MSDA. Existing MSDA methods learn domain invariant and domain-specific parameters (for each source domain) for the adaptation. However, unlike single-source UDA methods, learning domain-specific parameters makes them grow significantly proportional to the number of source domains used. This paper proposes a novel MSDA method called Prototype-based Mean-Teacher (PMT), which uses class prototypes instead of domain-specific subnets to preserve domain-specific information. These prototypes are learned using a contrastive loss, aligning the same categories across domains and separating different categories far apart. Because of the use of prototypes, the parameter size of our method does not increase significantly with the number of source domains, thus reducing memory issues and possible overfitting. Empirical studies show PMT outperforms state-of-the-art MSDA methods on several challenging object detection datasets
    • …
    corecore