18,217 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Random projection to preserve patient privacy

    Get PDF
    With the availability of accessible and widely used cloud services, it is natural that large components of healthcare systems migrate to them; for example, patient databases can be stored and processed in the cloud. Such cloud services provide enhanced flexibility and additional gains, such as availability, ease of data share, and so on. This trend poses serious threats regarding the privacy of the patients and the trust that an individual must put into the healthcare system itself. Thus, there is a strong need of privacy preservation, achieved through a variety of different approaches. In this paper, we study the application of a random projection-based approach to patient data as a means to achieve two goals: (1) provably mask the identity of users under some adversarial-attack settings, (2) preserve enough information to allow for aggregate data analysis and application of machine-learning techniques. As far as we know, such approaches have not been applied and tested on medical data. We analyze the tradeoff between the loss of accuracy on the outcome of machine-learning algorithms and the resilience against an adversary. We show that random projections proved to be strong against known input/output attacks while offering high quality data, as long as the projected space is smaller than the original space, and as long as the amount of leaked data available to the adversary is limited

    Toward a collective intelligence recommender system for education

    Get PDF
    The development of Information and Communication Technology (ICT), have revolutionized the world and have moved us into the information age, however the access and handling of this large amount of information is causing valuable time losses. Teachers in Higher Education especially use the Internet as a tool to consult materials and content for the development of the subjects. The internet has very broad services, and sometimes it is difficult for users to find the contents in an easy and fast way. This problem is increasing at the time, causing that students spend a lot of time in search information rather than in synthesis, analysis and construction of new knowledge. In this context, several questions have emerged: Is it possible to design learning activities that allow us to value the information search and to encourage collective participation?. What are the conditions that an ICT tool that supports a process of information search has to have to optimize the student's time and learning? This article presents the use and application of a Recommender System (RS) designed on paradigms of Collective Intelligence (CI). The RS designed encourages the collective learning and the authentic participation of the students. The research combines the literature study with the analysis of the ICT tools that have emerged in the field of the CI and RS. Also, Design-Based Research (DBR) was used to compile and summarize collective intelligence approaches and filtering techniques reported in the literature in Higher Education as well as to incrementally improving the tool. Several are the benefits that have been evidenced as a result of the exploratory study carried out. Among them the following stand out: • It improves student motivation, as it helps you discover new content of interest in an easy way. • It saves time in the search and classification of teaching material of interest. • It fosters specialized reading, inspires competence as a means of learning. • It gives the teacher the ability to generate reports of trends and behaviors of their students, real-time assessment of the quality of learning material. The authors consider that the use of ICT tools that combine the paradigms of the CI and RS presented in this work, are a tool that improves the construction of student knowledge and motivates their collective development in cyberspace, in addition, the model of Filltering Contents used supports the design of models and strategies of collective intelligence in Higher Education.Postprint (author's final draft
    • …
    corecore