780 research outputs found

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper

    Multi-Agent Task Allocation in Complementary Teams: A Hunter and Gatherer Approach

    Full text link
    Consider a dynamic task allocation problem, where tasks are unknowingly distributed over an environment. This paper considers each task comprised of two sequential subtasks: detection and completion, where each subtask can only be carried out by a certain type of agent. We address this problem using a novel nature-inspired approach called "hunter and gatherer". The proposed method employs two complementary teams of agents: one agile in detecting (hunters) and another skillful in completing (gatherers) the tasks. To minimize the collective cost of task accomplishments in a distributed manner, a game-theoretic solution is introduced to couple agents from complementary teams. We utilize market-based negotiation models to develop incentive-based decision-making algorithms relying on innovative notions of "certainty and uncertainty profit margins". The simulation results demonstrate that employing two complementary teams of hunters and gatherers can effectually improve the number of tasks completed by agents compared to conventional methods, while the collective cost of accomplishments is minimized. In addition, the stability and efficacy of the proposed solutions are studied using Nash equilibrium analysis and statistical analysis respectively. It is also numerically shown that the proposed solutions function fairly, i.e. for each type of agent, the overall workload is distributed equally.Comment: 15 pages, 12 figure

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Improved Trade-based Multi-robot Coordination

    Get PDF
    International audienceTeam work is essential to multiple mobile robot systems. An important question is, which robot should implement which action? In our previous work, we presented a trade-based task allocation approach for coordinated multi-robot exploration, which simulates the relationship between buyers and sellers in a business system, to achieve dynamic task allocation by using a mechanism of unsolicited bid. This paper still addresses the problem of coordinating multi-robot exploration while presents an improved trade-based approach to raise the efficiency of task allocation by using the Hungarian method. The proposed approach has been implemented and evaluated in simulation. The experimental results demonstrate the total exploration time can be significantly reduced by the improved trade-based approach compared to previous approaches

    Multi-robot Task Allocation using Agglomerative Clustering

    Get PDF
    The main objective of this thesis is to solve the problem of balancing tasks in the Multi-robot Task Allocation problem domain. When allocating a large number of tasks to a multi-robot system, it is important to balance the load effectively across the robots in the system. In this thesis an algorithm is proposed in which tasks are allocated through clustering, investigating the effectiveness of agglomerative hierarchical clustering as compared to K-means clustering. Once the tasks are clustered, each agent claims a cluster through a greedy self-assignment. This thesis investigates the performance both when all tasks are known ahead of time as well as when new tasks are injected into the system periodically. To account for new tasks, both global re-clustering and greedy clustering methods are considered. Three metrics: 1) total travel cost, 2) maximum distance traveled per robot, and 3) balancing cost index are used to compare the performance of the overall system in environments both with and without obstacles. The results collected from the experiments show that agglomerative hierarchical clustering is deterministic and better at minimizing the total travel cost, especially for large numbers of agents, whereas K-means works better to balance costs. In addition to this, the greedy approach for clustering new tasks works better for frequently appearing tasks than infrequent ones

    Everybody Needs Somebody Sometimes: Validation of Adaptive Recovery in Robotic Space Operations

    Get PDF
    This work assesses an adaptive approach to fault recovery in autonomous robotic space operations, which uses indicators of opportunity, such as physiological state measurements and observations of past human assistant performance, to inform future selections. We validated our reinforcement learning approach using data we collected from humans executing simulated mission scenarios. We present a method of structuring humanfactors experiments that permits collection of relevant indicator of opportunity and assigned assistance task performance data, as well as evaluation of our adaptive approach, without requiring large numbers of test subjects. Application of our reinforcement learning algorithm to our experimental data shows that our adaptive assistant selection approach can achieve lower cumulative regret compared to existing non-adaptive baseline approaches when using real human data. Our work has applications beyond space robotics to any application where autonomy failures may occur that require external intervention

    Multi-agent task allocation for harvest management

    Get PDF
    Multi-agent task allocation methods seek to distribute a set of tasks fairly amongst a set of agents. In real-world settings, such as soft fruit farms, human labourers undertake harvesting tasks. The harvesting workforce is typically organised by farm manager(s) who assign workers to the fields that are ready to be harvested and team leaders who manage the workers in the fields. Creating these assignments is a dynamic and complex problem, as the skill of the workforce and the yield (quantity of ripe fruit picked) are variable and not entirely predictable. The work presented here posits that multi-agent task allocation methods can assist farm managers and team leaders to manage the harvesting workforce effectively and efficiently. There are three key challenges faced when adapting multi-agent approaches to this problem: (i) staff time (and thus cost) should be minimised; (ii) tasks must be distributed fairly to keep staff motivated; and (iii) the approach must be able to handle incremental (incomplete) data as the season progresses. An adapted variation of Round Robin (RR) is proposed for the problem of assigning workers to fields, and market-based task allocation mechanisms are applied to the challenge of assigning tasks to workers within the fields. To evaluate the approach introduced here, experiments are performed based on data that was supplied by a large commercial soft fruit farm for the past two harvesting seasons. The results demonstrate that our approach produces appropriate worker-to-field allocations. Moreover, simulated experiments demonstrate that there is a “sweet spot” with respect to the ratio between two types of in-field workers

    BEHAVIORAL COMPOSITION FOR HETEROGENEOUS SWARMS

    Get PDF
    Research into swarm robotics has produced a robust library of swarm behaviors that excel at defined tasks such as flocking and area search, many of which have potential for application to a wide range of military problems. However, to be successfully applied to an operational environment, swarms must be flexible enough to achieve a wide array of specific objectives and usable enough to be configured and employed by lay operators. This research explored the use of the Mission-based Architecture for Swarm Composability (MASC) to develop mission-specific tactics as compositions of more general, reusable plays for use with the Advanced Robotic Systems Engineering Laboratory (ARSENL) swarm system. Three tactics were developed to conduct autonomous search of a geographic area and investigation of generated contacts of interest. The tactics were tested in live-flight and virtual environment experiments and compared to a preexisting monolithic behavior implementation completing the same task. Measures of performance were defined and observed that verified the effectiveness of solutions and confirmed the advantages that composition provides with respect to reusability and rapid development of increasingly complex behaviors.Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited
    • …
    corecore