316 research outputs found

    Multi-Objective Self-Organizing Migrating Algorithm: Sensitivity on Controlling Parameters

    Get PDF
    In this paper, we investigate the sensitivity of a novel Multi-Objective Self-Organizing Migrating Algorithm (MOSOMA) on setting its control parameters. Usually, efficiency and accuracy of searching for a solution depends on the settings of a used stochastic algorithm, because multi-objective optimization problems are highly non-linear. In the paper, the sensitivity analysis is performed exploiting a large number of benchmark problems having different properties (the number of optimized parameters, the shape of a Pareto front, etc.). The quality of solutions revealed by MOSOMA is evaluated in terms of a generational distance, a spread and a hyper-volume error. Recommendations for proper settings of the algorithm are derived: These recommendations should help a user to set the algorithm for any multi-objective task without prior knowledge about the solved problem

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    A deterministic method for the multiobjective optimization of electromagnetic devices and its application to pose detection for magnetic-assisted medical applications

    Get PDF
    In this work we present a Pattern Search optimizer, which being a deterministic method enjoys provable convergence properties. Furthermore, we develop alternatives and extensions of the standard deterministic method, and innovative hybrid algorithms merging the the Pattern Search with some stochastic approaches. Finally, we apply this method to a real case problem for the pose detection for magnetic-assisted medical applications in order to optimize the performance of the devic

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization

    Get PDF
    The optimal reactive power dispatch (ORPD) problem represents a noncontinuous, nonlinear, highly constrained optimization problem that has recently attracted wide research investigation. This paper presents a new hybridization technique for solving the ORPD problem based on the integration of particle swarm optimization (PSO) with artificial physics optimization (APO). This hybridized algorithm is tested and verified on the IEEE 30, IEEE 57, and IEEE 118 bus test systems to solve both single and multiobjective ORPD problems, considering three main aspects. These aspects include active power loss minimization, voltage deviation minimization, and voltage stability improvement. The results prove that the algorithm is effective and displays great consistency and robustness in solving both the single and multiobjective functions while improving the convergence performance of the PSO. It also shows superiority when compared with results obtained from previously reported literature for solving the ORPD problem

    An Improved Multiobjective Particle Swarm Optimization Algorithm Using Minimum Distance of Point to Line

    Get PDF

    Evolutionary population dynamics and multi-objective optimisation problems

    Get PDF
    Griffith Sciences, School of Information and Communication TechnologyFull Tex

    GALAXY: A new hybrid MOEA for the Optimal Design of Water Distribution Systems

    Get PDF
    This is the final version of the article. Available from American Geophysical Union via the DOI in this record.The first author would like to appreciate the financial support given by both the University of Exeter and the China Scholarship Council (CSC) toward the PhD research. We also appreciate the three anonymous reviewers, who help improve the quality of this paper substantially. The source code of the latest versions of NSGA-II and ε-MOEA can be downloaded from the official website of Kanpur Genetic Algorithms Laboratory via http://www.iitk.ac.in/kangal/codes.shtml. The description of each benchmark problem used in this paper, including the input file of EPANET and the associated best-known Pareto front, can be accessed from the following link to the Centre for Water Systems (http://tinyurl.com/cwsbenchmarks/). GALAXY can be accessed via http://tinyurl.com/cws-galaxy
    corecore