1,062 research outputs found

    Mission Specialist Human-Robot Interaction in Micro Unmanned Aerial Systems

    Get PDF
    This research investigated the Mission Specialist role in micro unmanned aerial systems (mUAS) and was informed by human-robot interaction (HRI) and technology findings, resulting in the design of an interface that increased the individual performance of 26 untrained CBRN (chemical, biological, radiological, nuclear) responders during two field studies, and yielded formative observations for HRI in mUAS. Findings from the HRI literature suggested a Mission Specialist requires a role-specific interface that shares visual common ground with the Pilot role and allows active control of the unmanned aerial vehicle (UAV) payload camera. Current interaction technology prohibits this as responders view the same interface as the Pilot and give verbal directions for navigation and payload control. A review of interaction principles resulted in a synthesis of five design guidelines and a system architecture that were used to implement a Mission Specialist interface on an Apple iPad. The Shared Roles Model was used to model the mUAS human-robot team using three formal role descriptions synthesized from the literature (Flight Director, Pilot, and Mission Specialist). The Mission Specialist interface was evaluated through two separate field studies involving 26 CBRN experts who did not have mUAS experience. The studies consisted of 52 mission trials to surveil, evaluate, and capture imagery of a chemical train derailment incident staged at Disaster City. Results from the experimental study showed that when a Mission Specialist was able to actively control the UAV payload camera and verbally coordinate with the Pilot, greater role empowerment (confidence, comfort, and perceived best individual and team performance) was reported by a majority of participants for similar tasks; thus, a role-specific interface is preferred and should be used by untrained responders instead of viewing the same interface as the Pilot in mUAS. Formative observations made during this research suggested: i) establishing common ground in mUAS is both verbal and visual, ii) type of coordination (active or passive) preferred by the Mission Specialist is affected by command-level experience and perceived responsibility for the robot, and iii) a separate Pilot role is necessary regardless of preferred coordination type in mUAS. This research is of importance to HRI and CBRN researchers and practitioners, as well as those in the fields of robotics, human-computer interaction, and artificial intelligence, because it found that a human Pilot role is necessary for assistance and understanding, and that there are hidden dependencies in the human-robot team that affect Mission Specialist performance

    Human-robot interaction for telemanipulation by small unmanned aerial systems

    Get PDF
    This dissertation investigated the human-robot interaction (HRI) for the Mission Specialist role in a telemanipulating unmanned aerial system (UAS). The emergence of commercial unmanned aerial vehicle (UAV) platforms transformed the civil and environmental engineering industries through applications such as surveying, remote infrastructure inspection, and construction monitoring, which normally use UAVs for visual inspection only. Recent developments, however, suggest that performing physical interactions in dynamic environments will be important tasks for future UAS, particularly in applications such as environmental sampling and infrastructure testing. In all domains, the availability of a Mission Specialist to monitor the interaction and intervene when necessary is essential for successful deployments. Additionally, manual operation is the default mode for safety reasons; therefore, understanding Mission Specialist HRI is important for all small telemanipulating UAS in civil engineering, regardless of system autonomy and application. A 5 subject exploratory study and a 36 subject experimental study were conducted to evaluate variations of a dedicated, mobile Mission Specialist interface for aerial telemanipulation from a small UAV. The Shared Roles Model was used to model the UAS human-robot team, and the Mission Specialist and Pilot roles were informed by the current state of practice for manipulating UAVs. Three interface camera view designs were tested using a within-subjects design, which included an egocentric view (perspective from the manipulator), exocentric view (perspective from the UAV), and mixed egocentric-exocentric view. The experimental trials required Mission Specialist participants to complete a series of tasks with physical, visual, and verbal requirements. Results from these studies found that subjects who preferred the exocentric condition performed tasks 50% faster when using their preferred interface; however, interface preferences did not affect performance for participants who preferred the mixed condition. This result led to a second finding that participants who preferred the exocentric condition were distracted by the egocentric view during the mixed condition, likely caused by cognitive tunneling, and the data suggest tradeoffs between performance improvements and attentional costs when adding information in the form of multiple views to the Mission Specialist interface. Additionally, based on this empirical evaluation of multiple camera views, the exocentric view was recommended for use in a dedicated Mission Specialist telemanipulation interface. Contributions of this thesis include: i) conducting the first focused HRI study of aerial telemanipulation, ii) development of an evaluative model for telemanipulation performance, iii) creation of new recommendations for aerial telemanipulation interfacing, and iv) contribution of code, hardware designs, and system architectures to the open-source UAV community. The evaluative model provides a detailed framework, a complement to the abstraction of the Shared Roles Model, that can be used to measure the effects of changes in the system, environment, operators, and interfacing factors on performance. The practical contributions of this work will expedite the use of manipulating UAV technologies by scientists, researchers, and stakeholders, particularly those in civil engineering, who will directly benefit from improved manipulating UAV performance

    Countering UAVs – the Mover of Research in Military Technology

    Get PDF
    Unmanned aerial vehicles (UAVs) are massively seeping into a wide range of human activities. Along with other remotely controlled or automatic devices, they have entered many aspects of human activities and industry. While the majority of researchers have been working on the construction, deployment and non-military use of UAVs, the protection against UAVs remained on the edge of their interest. Nowadays, the situation is rapidly changing. The risk of misuse of UAVs by criminals, guerrillas or terrorists has compelled authorities, scientists and defence industry to face this threat. Organisations have launched crucial infrastructure defence programs to cope with UAV threat. To solve this problem, it is necessary to develop disciplines improving the air space surveillance and UAVs elimination techniques. The substantial aspects of the UAVs detection and elimination were analysed, being supported by a number of conferences, workshops and journals articles. The contribution of the study in the Counter–UAV area consists particularly in generalisation and evaluation of the main technical issues. The aim of this paper is to emphasise the importance of developing new scientific fields for countering UAVs, and hence it is directed firstly on the scientific audience

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    Development of Unmanned Aerial Vehicle (Quadcopter)With Real-Time Object Tracking

    Get PDF
    In the previous decade, Unmanned Aerial Vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different regions going from military applications to activity reconnaissance. This thesis is an overview of a particular sort of UAV called quadrotor or quadcopter. Scientists are often picking quadrotors for their exploration because a quadrotor can precisely and productively perform assignments that future of high hazard for a human pilot to perform. This thesis includes the dynamic models of a quadrotor and model-autonomous control systems. It also explains the complete description of developed quadcopter used for surveillance purpose with real-time object detection. In the present time, the focus has moved to outlining autonomous quadrotors. Ultimately, it examines the potential applications of quadrotors and their part in multi-operators frameworks. The Unmanned aerial vehicle (Quadcopter) has been developed that could be used for search and surveillance purpose. This project comprised of both hardware and software part. The hardware part comprised of the development of unmanned aerial vehicle (Quadcopter). The main components that were used in this project are KK2 flight controller board, outrunner brushless DC motor, Electronic Speed Controllers (ESC), GPS (Global Positioning System) receiver, video transmitter and receiver, HD (High Definition) camera, RC (Radio Controlled) transmitter and receiver. Software part comprised of real-time object detection and tracking algorithm for detecting and tracking of human beings that were done with the help of Matlab software. After achieving the stable flight, the camera installed on the quadcopter would transmit a video signal to the receiver placed on the ground station. Video signal from the receiver would then be transferred to Matlab software for further processing or for tracking human beings using real-time object detection and tracking algorith

    Unmanned Systems Sentinel / 11 January 2016

    Get PDF
    Approved for public release; distribution is unlimited

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    System elements required to guarantee the reliability, availability and integrity of decision-making information in a complex airborne autonomous system

    Get PDF
    Current air traffic management systems are centred on piloted aircraft, in which all the main decisions are made by humans. In the world of autonomous vehicles, there will be a driving need for decisions to be made by the system rather than by humans due to the benefits of more automation such as reducing the likelihood of human error, handling more air traffic in national airspace safely, providing prior warnings of potential conflicts etc. The system will have to decide on courses of action that will have highly safety critical consequences. One way to ensure these decisions are robust is to guarantee that the information being used for the decision is valid and of very high integrity. [Continues.

    Counter Unmanned Aircraft Systems Technologies and Operations

    Get PDF
    As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field. In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures. As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere. Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December) Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.https://newprairiepress.org/ebooks/1031/thumbnail.jp
    corecore