1,773 research outputs found

    대용량 데이터 탐색을 위한 점진적 시각화 시스템 설계

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 컴퓨터공학부,2020. 2. 서진욱.Understanding data through interactive visualization, also known as visual analytics, is a common and necessary practice in modern data science. However, as data sizes have increased at unprecedented rates, the computation latency of visualization systems becomes a significant hurdle to visual analytics. The goal of this dissertation is to design a series of systems for progressive visual analytics (PVA)—a visual analytics paradigm that can provide intermediate results during computation and allow visual exploration of these results—to address the scalability hurdle. To support the interactive exploration of data with billions of records, we first introduce SwiftTuna, an interactive visualization system with scalable visualization and computation components. Our performance benchmark demonstrates that it can handle data with four billion records, giving responsive feedback every few seconds without precomputation. Second, we present PANENE, a progressive algorithm for the Approximate k-Nearest Neighbor (AKNN) problem. PANENE brings useful machine learning methods into visual analytics, which has been challenging due to their long initial latency resulting from AKNN computation. In particular, we accelerate t-Distributed Stochastic Neighbor Embedding (t-SNE), a popular non-linear dimensionality reduction technique, which enables the responsive visualization of data with a few hundred columns. Each of these two contributions aims to address the scalability issues stemming from a large number of rows or columns in data, respectively. Third, from the users' perspective, we focus on improving the trustworthiness of intermediate knowledge gained from uncertain results in PVA. We propose a novel PVA concept, Progressive Visual Analytics with Safeguards, and introduce PVA-Guards, safeguards people can leave on uncertain intermediate knowledge that needs to be verified. We also present a proof-of-concept system, ProReveal, designed and developed to integrate seven safeguards into progressive data exploration. Our user study demonstrates that people not only successfully created PVA-Guards on ProReveal but also voluntarily used PVA-Guards to manage the uncertainty of their knowledge. Finally, summarizing the three studies, we discuss design challenges for progressive systems as well as future research agendas for PVA.현대 데이터 사이언스에서 인터랙티브한 시각화를 통해 데이터를 이해하는 것은 필수적인 분석 방법 중 하나이다. 그러나, 최근 데이터의 크기가 폭발적으로 증가하면서 데이터 크기로 인해 발생하는 지연 시간이 인터랙티브한 시각적 분석에 큰 걸림돌이 되었다. 본 연구에서는 이러한 확장성 문제를 해결하기 위해 점진적 시각적 분석(Progressive Visual Analytics)을 지원하는 일련의 시스템을 디자인하고 개발한다. 이러한 점진적 시각적 분석 시스템은 데이터 처리가 완전히 끝나지 않더라도 중간 분석 결과를 사용자에게 제공함으로써 데이터의 크기로 인해 발생하는 지연 시간 문제를 완화할 수 있다. 첫째로, 수십억 건의 행을 가지는 데이터를 시각적으로 탐색할 수 있는 SwiftTuna 시스템을 제안한다. 데이터 처리 및 시각적 표현의 확장성을 목표로 개발된 이 시스템은, 약 40억 건의 행을 가진 데이터에 대한 시각화를 전처리 없이 수 초마다 업데이트할 수 있는 것으로 나타났다. 둘째로, 근사적 k-최근접점(Approximate k-Nearest Neighbor) 문제를 점진적으로 계산하는 PANENE 알고리즘을 제안한다. 근사적 k-최근접점 문제는 여러 기계 학습 기법에서 쓰임에도 불구하고 초기 계산 시간이 길어서 인터랙티브한 시스템에 적용하기 힘든 한계가 있었다. PANENE 알고리즘은 이러한 긴 초기 계산 시간을 획기적으로 개선하여 다양한 기계 학습 기법을 시각적 분석에 활용할 수 있도록 한다. 특히, 유용한 비선형적 차원 감소 기법인 t-분포 확률적 임베딩(t-Distributed Stochastic Neighbor Embedding)을 가속하여 수백 개의 차원을 가지는 데이터를 빠른 시간 내에 사영할 수 있다. 위의 두 시스템과 알고리즘이 데이터의 행 또는 열의 개수로 인한 확장성 문제를 해결하고자 했다면, 세 번째 시스템에서는 점진적 시각적 분석의 신뢰도 문제를 개선하고자 한다. 점진적 시각적 분석에서 사용자에게 주어지는 중간 계산 결과는 최종 결과의 근사치이므로 불확실성이 존재한다. 본 연구에서는 세이프가드를 이용한 점진적 시각적 분석(Progressive Visual Analytics with Safeguards)이라는 새로운 개념을 제안한다. 이 개념은 사용자가 점진적 탐색에서 마주하는 불확실한 중간 지식에 세이프가드를 남길 수 있도록 하여 탐색에서 얻은 지식의 정확도를 추후 검증할 수 있도록 한다. 또한, 이러한 개념을 실제로 구현하여 탑재한 ProReveal 시스템을 소개한다. ProReveal를 이용한 사용자 실험에서 사용자들은 세이프가드를 성공적으로 만들 수 있었을 뿐만 아니라, 중간 지식의 불확실성을 다루기 위해 세이프가드를 자발적으로 이용한다는 것을 알 수 있었다. 마지막으로, 위 세 가지 연구의 결과를 종합하여 점진적 시각적 분석 시스템을 구현할 때의 디자인적 난제와 향후 연구 방향을 모색한다.CHAPTER1. Introduction 2 1.1 Background and Motivation 2 1.2 Thesis Statement and Research Questions 5 1.3 Thesis Contributions 5 1.3.1 Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 6 1.3.2 ProgressiveComputation of Approximate k-Nearest Neighbors and Responsive t-SNE 7 1.3.3 Progressive Visual Analytics with Safeguards 8 1.4 Structure of Dissertation 9 CHAPTER2. Related Work 11 2.1 Progressive Visual Analytics 11 2.1.1 Definitions 11 2.1.2 System Latency and Human Factors 13 2.1.3 Users, Tasks, and Models 15 2.1.4 Techniques, Algorithms, and Systems. 17 2.1.5 Uncertainty Visualization 19 2.2 Approaches for Scalable Visualization Systems 20 2.3 The k-Nearest Neighbor (KNN) Problem 22 2.4 t-Distributed Stochastic Neighbor Embedding 26 CHAPTER3. SwiTuna: Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 28 3.1 The SwiTuna Design 31 3.1.1 Design Considerations 32 3.1.2 System Overview 33 3.1.3 Scalable Visualization Components 36 3.1.4 Visualization Cards 40 3.1.5 User Interface and Interaction 42 3.2 Responsive Querying 44 3.2.1 Querying Pipeline 44 3.2.2 Prompt Responses 47 3.2.3 Incremental Processing 47 3.3 Evaluation: Performance Benchmark 49 3.3.1 Study Design 49 3.3.2 Results and Discussion 52 3.4 Implementation 56 3.5 Summary 56 CHAPTER4. PANENE:AProgressive Algorithm for IndexingandQuerying Approximate k-Nearest Neighbors 58 4.1 Approximate k-Nearest Neighbor 61 4.1.1 A Sequential Algorithm 62 4.1.2 An Online Algorithm 63 4.1.3 A Progressive Algorithm 66 4.1.4 Filtered AKNN Search 71 4.2 k-Nearest Neighbor Lookup Table 72 4.3 Benchmark. 78 4.3.1 Online and Progressive k-d Trees 78 4.3.2 k-Nearest Neighbor Lookup Tables 83 4.4 Applications 85 4.4.1 Progressive Regression and Density Estimation 85 4.4.2 Responsive t-SNE 87 4.5 Implementation 92 4.6 Discussion 92 4.7 Summary 93 CHAPTER5. ProReveal: Progressive Visual Analytics with Safeguards 95 5.1 Progressive Visual Analytics with Safeguards 98 5.1.1 Definition 98 5.1.2 Examples 101 5.1.3 Design Considerations 103 5.2 ProReveal 105 5.3 Evaluation 121 5.4 Discussion 127 5.5 Summary 130 CHAPTER6. Discussion 132 6.1 Lessons Learned 132 6.2 Limitations 135 CHAPTER7. Conclusion 137 7.1 Thesis Contributions Revisited 137 7.2 Future Research Agenda 139 7.3 Final Remarks 141 Abstract (Korean) 155 Acknowledgments (Korean) 157Docto

    Extreme-scale visual analytics

    Get PDF
    pre-printThe September/October 2004 CG&A introduced the term visual analytics (VA) to the computer science literature.1 In 2005, an international advisory panel with representatives from academia, industry, and government defined VA as "the science of analytical reasoning facilitated by interactive visual interfaces."2 VA has grown rapidly into a vibrant R&D community offering data analytics and exploration solutions to both scientific and nonscientific problems in diverse domains and platforms. This special issue further examines advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications

    Query-driven learning for predictive analytics of data subspace cardinality

    Get PDF
    Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks

    Progressive Similarity Search on Time Series Data

    Get PDF
    International audienceTime series data are increasing at a dramatic rate, yet their analysis remains highly relevant in a wide range of human activities. Due to their volume, existing systems dealing with time series data cannot guarantee interactive response times, even for fundamental tasks such as similarity search. Therefore , in this paper, we present our vision to develop analytic approaches that support exploration and decision making by providing progressive results, before the final and exact ones have been computed. We demonstrate through experiments that providing first approximate and then progressive answers is useful (and necessary) for similarity search queries on very large time series data. Our findings indicate that there is a gap between the time the most similar answer is found and the time when the search algorithm terminates, resulting in inflated waiting times without any improvement. We present preliminary ideas on computing probabilistic estimates of the final results that could help users decide when to stop the search process, i.e., deciding when improvement in the final answer is unlikely, thus eliminating waiting time. Finally, we discuss two additional challenges: how to compute efficiently these probabilistic estimates, and how to communicate them to users

    Towards Prescriptive Analytics in Cyber-Physical Systems

    Get PDF
    More and more of our physical world today is being monitored and controlled by so-called cyber-physical systems (CPSs). These are compositions of networked autonomous cyber and physical agents such as sensors, actuators, computational elements, and humans in the loop. Today, CPSs are still relatively small-scale and very limited compared to CPSs to be witnessed in the future. Future CPSs are expected to be far more complex, large-scale, wide-spread, and mission-critical, and found in a variety of domains such as transportation, medicine, manufacturing, and energy, where they will bring many advantages such as the increased efficiency, sustainability, reliability, and security. To unleash their full potential, CPSs need to be equipped with, among other features, the support for automated planning and control, where computing agents collaboratively and continuously plan and control their actions in an intelligent and well-coordinated manner to secure and optimize a physical process, e.g., electricity flow in the power grid. In today’s CPSs, the control is typically automated, but the planning is solely performed by humans. Unfortunately, it is intractable and infeasible for humans to plan every action in a future CPS due to the complexity, scale, and volatility of a physical process. Due to these properties, the control and planning has to be continuous and automated in future CPSs. Humans may only analyse and tweak the system’s operation using the set of tools supporting prescriptive analytics that allows them (1) to make predictions, (2) to get the suggestions of the most prominent set of actions (decisions) to be taken, and (3) to analyse the implications as if such actions were taken. This thesis considers the planning and control in the context of a large-scale multi-agent CPS. Based on the smart-grid use-case, it presents a so-called PrescriptiveCPS – which is (the conceptual model of) a multi-agent, multi-role, and multi-level CPS automatically and continuously taking and realizing decisions in near real-time and providing (human) users prescriptive analytics tools to analyse and manage the performance of the underlying physical system (or process). Acknowledging the complexity of CPSs, this thesis provides contributions at the following three levels of scale: (1) the level of a (full) PrescriptiveCPS, (2) the level of a single PrescriptiveCPS agent, and (3) the level of a component of a CPS agent software system. At the CPS level, the contributions include the definition of PrescriptiveCPS, according to which it is the system of interacting physical and cyber (sub-)systems. Here, the cyber system consists of hierarchically organized inter-connected agents, collectively managing instances of so-called flexibility, decision, and prescription models, which are short-lived, focus on the future, and represent a capability, an (user’s) intention, and actions to change the behaviour (state) of a physical system, respectively. At the agent level, the contributions include the three-layer architecture of an agent software system, integrating the number of components specially designed or enhanced to support the functionality of PrescriptiveCPS. At the component level, the most of the thesis contribution is provided. The contributions include the description, design, and experimental evaluation of (1) a unified multi-dimensional schema for storing flexibility and prescription models (and related data), (2) techniques to incrementally aggregate flexibility model instances and disaggregate prescription model instances, (3) a database management system (DBMS) with built-in optimization problem solving capability allowing to formulate optimization problems using SQL-like queries and to solve them “inside a database”, (4) a real-time data management architecture for processing instances of flexibility and prescription models under (soft or hard) timing constraints, and (5) a graphical user interface (GUI) to visually analyse the flexibility and prescription model instances. Additionally, the thesis discusses and exemplifies (but provides no evaluations of) (1) domain-specific and in-DBMS generic forecasting techniques allowing to forecast instances of flexibility models based on historical data, and (2) powerful ways to analyse past, current, and future based on so-called hypothetical what-if scenarios and flexibility and prescription model instances stored in a database. Most of the contributions at this level are based on the smart-grid use-case. In summary, the thesis provides (1) the model of a CPS with planning capabilities, (2) the design and experimental evaluation of prescriptive analytics techniques allowing to effectively forecast, aggregate, disaggregate, visualize, and analyse complex models of the physical world, and (3) the use-case from the energy domain, showing how the introduced concepts are applicable in the real world. We believe that all this contribution makes a significant step towards developing planning-capable CPSs in the future.Mehr und mehr wird heute unsere physische Welt überwacht und durch sogenannte Cyber-Physical-Systems (CPS) geregelt. Dies sind Kombinationen von vernetzten autonomen cyber und physischen Agenten wie Sensoren, Aktoren, Rechenelementen und Menschen. Heute sind CPS noch relativ klein und im Vergleich zu CPS der Zukunft sehr begrenzt. Zukünftige CPS werden voraussichtlich weit komplexer, größer, weit verbreiteter und unternehmenskritischer sein sowie in einer Vielzahl von Bereichen wie Transport, Medizin, Fertigung und Energie – in denen sie viele Vorteile wie erhöhte Effizienz, Nachhaltigkeit, Zuverlässigkeit und Sicherheit bringen – anzutreffen sein. Um ihr volles Potenzial entfalten zu können, müssen CPS unter anderem mit der Unterstützung automatisierter Planungs- und Steuerungsfunktionalität ausgestattet sein, so dass Agents ihre Aktionen gemeinsam und kontinuierlich auf intelligente und gut koordinierte Weise planen und kontrollieren können, um einen physischen Prozess wie den Stromfluss im Stromnetz sicherzustellen und zu optimieren. Zwar sind in den heutigen CPS Steuerung und Kontrolle typischerweise automatisiert, aber die Planung wird weiterhin allein von Menschen durchgeführt. Leider ist diese Aufgabe nur schwer zu bewältigen, und es ist für den Menschen schlicht unmöglich, jede Aktion in einem zukünftigen CPS auf Basis der Komplexität, des Umfangs und der Volatilität eines physikalischen Prozesses zu planen. Aufgrund dieser Eigenschaften müssen Steuerung und Planung in CPS der Zukunft kontinuierlich und automatisiert ablaufen. Der Mensch soll sich dabei ganz auf die Analyse und Einflussnahme auf das System mit Hilfe einer Reihe von Werkzeugen konzentrieren können. Derartige Werkzeuge erlauben (1) Vorhersagen, (2) Vorschläge der wichtigsten auszuführenden Aktionen (Entscheidungen) und (3) die Analyse und potentiellen Auswirkungen der zu fällenden Entscheidungen. Diese Arbeit beschäftigt sich mit der Planung und Kontrolle im Rahmen großer Multi-Agent-CPS. Basierend auf dem Smart-Grid als Anwendungsfall wird ein sogenanntes PrescriptiveCPS vorgestellt, welches einem Multi-Agent-, Multi-Role- und Multi-Level-CPS bzw. dessen konzeptionellem Modell entspricht. Diese PrescriptiveCPS treffen und realisieren automatisch und kontinuierlich Entscheidungen in naher Echtzeit und stellen Benutzern (Menschen) Prescriptive-Analytics-Werkzeuge und Verwaltung der Leistung der zugrundeliegenden physischen Systeme bzw. Prozesse zur Verfügung. In Anbetracht der Komplexität von CPS leistet diese Arbeit Beiträge auf folgenden Ebenen: (1) Gesamtsystem eines PrescriptiveCPS, (2) PrescriptiveCPS-Agenten und (3) Komponenten eines CPS-Agent-Software-Systems. Auf CPS-Ebene umfassen die Beiträge die Definition von PrescriptiveCPS als ein System von wechselwirkenden physischen und cyber (Sub-)Systemen. Das Cyber-System besteht hierbei aus hierarchisch organisierten verbundenen Agenten, die zusammen Instanzen sogenannter Flexibility-, Decision- und Prescription-Models verwalten, welche von kurzer Dauer sind, sich auf die Zukunft konzentrieren und Fähigkeiten, Absichten (des Benutzers) und Aktionen darstellen, die das Verhalten des physischen Systems verändern. Auf Agenten-Ebene umfassen die Beiträge die Drei-Ebenen-Architektur eines Agentensoftwaresystems sowie die Integration von Komponenten, die insbesondere zur besseren Unterstützung der Funktionalität von PrescriptiveCPS entwickelt wurden. Der Schwerpunkt dieser Arbeit bilden die Beiträge auf der Komponenten-Ebene, diese umfassen Beschreibung, Design und experimentelle Evaluation (1) eines einheitlichen multidimensionalen Schemas für die Speicherung von Flexibility- and Prescription-Models (und verwandten Daten), (2) der Techniken zur inkrementellen Aggregation von Instanzen eines Flexibilitätsmodells und Disaggregation von Prescription-Models, (3) eines Datenbankmanagementsystem (DBMS) mit integrierter Optimierungskomponente, die es erlaubt, Optimierungsprobleme mit Hilfe von SQL-ähnlichen Anfragen zu formulieren und sie „in einer Datenbank zu lösen“, (4) einer Echtzeit-Datenmanagementarchitektur zur Verarbeitung von Instanzen der Flexibility- and Prescription-Models unter (weichen oder harten) Zeitvorgaben und (5) einer grafische Benutzeroberfläche (GUI) zur Visualisierung und Analyse von Instanzen der Flexibility- and Prescription-Models. Darüber hinaus diskutiert und veranschaulicht diese Arbeit beispielhaft ohne detaillierte Evaluation (1) anwendungsspezifische und im DBMS integrierte Vorhersageverfahren, die die Vorhersage von Instanzen der Flexibility- and Prescription-Models auf Basis historischer Daten ermöglichen, und (2) leistungsfähige Möglichkeiten zur Analyse von Vergangenheit, Gegenwart und Zukunft auf Basis sogenannter hypothetischer „What-if“-Szenarien und der in der Datenbank hinterlegten Instanzen der Flexibility- and Prescription-Models. Die meisten der Beiträge auf dieser Ebene basieren auf dem Smart-Grid-Anwendungsfall. Zusammenfassend befasst sich diese Arbeit mit (1) dem Modell eines CPS mit Planungsfunktionen, (2) dem Design und der experimentellen Evaluierung von Prescriptive-Analytics-Techniken, die eine effektive Vorhersage, Aggregation, Disaggregation, Visualisierung und Analyse komplexer Modelle der physischen Welt ermöglichen und (3) dem Anwendungsfall der Energiedomäne, der zeigt, wie die vorgestellten Konzepte in der Praxis Anwendung finden. Wir glauben, dass diese Beiträge einen wesentlichen Schritt in der zukünftigen Entwicklung planender CPS darstellen.Mere og mere af vores fysiske verden bliver overvåget og kontrolleret af såkaldte cyber-fysiske systemer (CPSer). Disse er sammensætninger af netværksbaserede autonome IT (cyber) og fysiske (physical) agenter, såsom sensorer, aktuatorer, beregningsenheder, og mennesker. I dag er CPSer stadig forholdsvis små og meget begrænsede i forhold til de CPSer vi kan forvente i fremtiden. Fremtidige CPSer forventes at være langt mere komplekse, storstilede, udbredte, og missionskritiske, og vil kunne findes i en række områder såsom transport, medicin, produktion og energi, hvor de vil give mange fordele, såsom øget effektivitet, bæredygtighed, pålidelighed og sikkerhed. For at frigøre CPSernes fulde potentiale, skal de bl.a. udstyres med støtte til automatiseret planlægning og kontrol, hvor beregningsagenter i samspil og løbende planlægger og styrer deres handlinger på en intelligent og velkoordineret måde for at sikre og optimere en fysisk proces, såsom elforsyningen i elnettet. I nuværende CPSer er styringen typisk automatiseret, mens planlægningen udelukkende er foretaget af mennesker. Det er umuligt for mennesker at planlægge hver handling i et fremtidigt CPS på grund af kompleksiteten, skalaen, og omskifteligheden af en fysisk proces. På grund af disse egenskaber, skal kontrol og planlægning være kontinuerlig og automatiseret i fremtidens CPSer. Mennesker kan kun analysere og justere systemets drift ved hjælp af det sæt af værktøjer, der understøtter præskriptive analyser (prescriptive analytics), der giver dem mulighed for (1) at lave forudsigelser, (2) at få forslagene fra de mest fremtrædende sæt handlinger (beslutninger), der skal tages, og (3) at analysere konsekvenserne, hvis sådanne handlinger blev udført. Denne afhandling omhandler planlægning og kontrol i forbindelse med store multi-agent CPSer. Baseret på en smart-grid use case, præsenterer afhandlingen det såkaldte PrescriptiveCPS hvilket er (den konceptuelle model af) et multi-agent, multi-rolle, og multi-level CPS, der automatisk og kontinuerligt tager beslutninger i nær-realtid og leverer (menneskelige) brugere præskriptiveanalyseværktøjer til at analysere og håndtere det underliggende fysiske system (eller proces). I erkendelse af kompleksiteten af CPSer, giver denne afhandling bidrag til følgende tre niveauer: (1) niveauet for et (fuldt) PrescriptiveCPS, (2) niveauet for en enkelt PrescriptiveCPS agent, og (3) niveauet for en komponent af et CPS agent software system. På CPS-niveau, omfatter bidragene definitionen af PrescriptiveCPS, i henhold til hvilken det er det system med interagerende fysiske- og IT- (under-) systemer. Her består IT-systemet af hierarkisk organiserede forbundne agenter der sammen styrer instanser af såkaldte fleksibilitet (flexibility), beslutning (decision) og præskriptive (prescription) modeller, som henholdsvis er kortvarige, fokuserer på fremtiden, og repræsenterer en kapacitet, en (brugers) intention, og måder til at ændre adfærd (tilstand) af et fysisk system. På agentniveau omfatter bidragene en tre-lags arkitektur af et agent software system, der integrerer antallet af komponenter, der er specielt konstrueret eller udbygges til at understøtte funktionaliteten af PrescriptiveCPS. Komponentniveauet er hvor afhandlingen har sit hovedbidrag. Bidragene omfatter beskrivelse, design og eksperimentel evaluering af (1) et samlet multi- dimensionelt skema til at opbevare fleksibilitet og præskriptive modeller (og data), (2) teknikker til trinvis aggregering af fleksibilitet modelinstanser og disaggregering af præskriptive modelinstanser (3) et database management system (DBMS) med indbygget optimeringsproblemløsning (optimization problem solving) der gør det muligt at formulere optimeringsproblemer ved hjælp af SQL-lignende forespørgsler og at løse dem "inde i en database", (4) en realtids data management arkitektur til at behandle instanser af fleksibilitet og præskriptive modeller under (bløde eller hårde) tidsbegrænsninger, og (5) en grafisk brugergrænseflade (GUI) til visuelt at analysere fleksibilitet og præskriptive modelinstanser. Derudover diskuterer og eksemplificerer afhandlingen (men giver ingen evalueringer af) (1) domæne-specifikke og in-DBMS generiske prognosemetoder der gør det muligt at forudsige instanser af fleksibilitet modeller baseret på historiske data, og (2) kraftfulde måder at analysere tidligere-, nutids- og fremtidsbaserede såkaldte hypotetiske hvad-hvis scenarier og fleksibilitet og præskriptive modelinstanser gemt i en database. De fleste af bidragene på dette niveau er baseret på et smart-grid brugsscenarie. Sammenfattende giver afhandlingen (1) modellen for et CPS med planlægningsmulighed, (2) design og eksperimentel evaluering af præskriptive analyse teknikker der gør det muligt effektivt at forudsige, aggregere, disaggregere, visualisere og analysere komplekse modeller af den fysiske verden, og (3) brugsscenariet fra energiområdet, der viser, hvordan de indførte begreber kan anvendes i den virkelige verden. Vi mener, at dette bidrag udgør et betydeligt skridt i retning af at udvikle CPSer til planlægningsbrug i fremtiden
    corecore