158,703 research outputs found

    Predicting Global Ranking of Universities Across the World Using Machine Learning Regression Technique

    Get PDF
    Digital transformation in the field of education plays a significant role especially when used for analysis of various teaching and learning parameters to predict global ranking index of the universities across the world. Machine learning is a subset of computer science facilitates machine to learn the data using various algorithms and predict the results. This research explores the Quacquarelli Symonds approach for evaluating global university rankings and develop machine learning models for predicting global rankings. The research uses exploratory data analysis for analysing the dataset and then evaluate machine learning algorithms using regression techniques for predicting the global rankings. The research also addresses the future scope towards evaluating machine learning algorithms for predicting outcomes using classification and clustering techniques

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    Are We Closing the Loop Yet? Gaps in the Generalizability of VIS4ML Research

    Full text link
    Visualization for machine learning (VIS4ML) research aims to help experts apply their prior knowledge to develop, understand, and improve the performance of machine learning models. In conceiving VIS4ML systems, researchers characterize the nature of human knowledge to support human-in-the-loop tasks, design interactive visualizations to make ML components interpretable and elicit knowledge, and evaluate the effectiveness of human-model interchange. We survey recent VIS4ML papers to assess the generalizability of research contributions and claims in enabling human-in-the-loop ML. Our results show potential gaps between the current scope of VIS4ML research and aspirations for its use in practice. We find that while papers motivate that VIS4ML systems are applicable beyond the specific conditions studied, conclusions are often overfitted to non-representative scenarios, are based on interactions with a small set of ML experts and well-understood datasets, fail to acknowledge crucial dependencies, and hinge on decisions that lack justification. We discuss approaches to close the gap between aspirations and research claims and suggest documentation practices to report generality constraints that better acknowledge the exploratory nature of VIS4ML research

    A Systematic Review of the Factors that Impact the Prediction of Retention and Dropout in Higher Education

    Get PDF
    Identifying factors that affect academic dropout and retention is a research area that brings a plurality of opinions and concepts. This article identifies current primary studies to understand the main factors related to dropout and retention. It is quantitative, exploratory, and explanatory research of an applied nature, using the technical procedures of case study and bibliographic research. The systematic review of the literature identifies the factors that impact academic dropout and retention and serves as a basis for a machine learning project. Academic, demographic, and learning factors can predict dropouts and retention. The definition of the factors used and the way of use is essential to obtain good forecasting results. The identified factors were used in the institution

    No Pattern, No Recognition: a Survey about Reproducibility and Distortion Issues of Text Clustering and Topic Modeling

    Full text link
    Extracting knowledge from unlabeled texts using machine learning algorithms can be complex. Document categorization and information retrieval are two applications that may benefit from unsupervised learning (e.g., text clustering and topic modeling), including exploratory data analysis. However, the unsupervised learning paradigm poses reproducibility issues. The initialization can lead to variability depending on the machine learning algorithm. Furthermore, the distortions can be misleading when regarding cluster geometry. Amongst the causes, the presence of outliers and anomalies can be a determining factor. Despite the relevance of initialization and outlier issues for text clustering and topic modeling, the authors did not find an in-depth analysis of them. This survey provides a systematic literature review (2011-2022) of these subareas and proposes a common terminology since similar procedures have different terms. The authors describe research opportunities, trends, and open issues. The appendices summarize the theoretical background of the text vectorization, the factorization, and the clustering algorithms that are directly or indirectly related to the reviewed works

    Financial Fraud Detection using Machine Learning Techniques

    Get PDF
    Payments related fraud is a key aspect of cyber-crime agencies and recent research has shown that machine learning techniques can be applied successfully to detect fraudulent transactions in large amounts of payments data. Such techniques have the ability to detect fraudulent transactions that human auditors may not be able to catch and also do this on a real time basis. In this project, we apply multiple supervised machine learning techniques to the problem of fraud detection using a publicly available simulated payment transactions data. We aim to demonstrate how supervised ML techniques can be used to classify data with high class imbalance with high accuracy. We demonstrate that exploratory analysis can be used to separate fraudulent and nonfraudulent transactions. We also demonstrate that for a well separated dataset, treebased algorithms like Random Forest work much better than Logistic Regression
    • 

    corecore