59,016 research outputs found

    Reinforcement Learning for Racecar Control

    Get PDF
    This thesis investigates the use of reinforcement learning to learn to drive a racecar in the simulated environment of the Robot Automobile Racing Simulator. Real-life race driving is known to be difficult for humans, and expert human drivers use complex sequences of actions. There are a large number of variables, some of which change stochastically and all of which may affect the outcome. This makes driving a promising domain for testing and developing Machine Learning techniques that have the potential to be robust enough to work in the real world. Therefore the principles of the algorithms from this work may be applicable to a range of problems. The investigation starts by finding a suitable data structure to represent the information learnt. This is tested using supervised learning. Reinforcement learning is added and roughly tuned, and the supervised learning is then removed. A simple tabular representation is found satisfactory, and this avoids difficulties with more complex methods and allows the investigation to concentrate on the essentials of learning. Various reward sources are tested and a combination of three are found to produce the best performance. Exploration of the problem space is investigated. Results show exploration is essential but controlling how much is done is also important. It turns out the learning episodes need to be very long and because of this the task needs to be treated as continuous by using discounting to limit the size of the variables stored. Eligibility traces are used with success to make the learning more efficient. The tabular representation is made more compact by hashing and more accurate by using smaller buckets. This slows the learning but produces better driving. The improvement given by a rough form of generalisation indicates the replacement of the tabular method by a function approximator is warranted. These results show reinforcement learning can work within the Robot Automobile Racing Simulator, and lay the foundations for building a more efficient and competitive agent

    Parsing the effects of reward on cognitive control

    Get PDF

    Navigating Occluded Intersections with Autonomous Vehicles using Deep Reinforcement Learning

    Full text link
    Providing an efficient strategy to navigate safely through unsignaled intersections is a difficult task that requires determining the intent of other drivers. We explore the effectiveness of Deep Reinforcement Learning to handle intersection problems. Using recent advances in Deep RL, we are able to learn policies that surpass the performance of a commonly-used heuristic approach in several metrics including task completion time and goal success rate and have limited ability to generalize. We then explore a system's ability to learn active sensing behaviors to enable navigating safely in the case of occlusions. Our analysis, provides insight into the intersection handling problem, the solutions learned by the network point out several shortcomings of current rule-based methods, and the failures of our current deep reinforcement learning system point to future research directions.Comment: IEEE International Conference on Robotics and Automation (ICRA 2018
    corecore