13 research outputs found

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Computer-aided biomimetics : semi-open relation extraction from scientific biological texts

    Get PDF
    Engineering inspired by biology – recently termed biom* – has led to various ground-breaking technological developments. Example areas of application include aerospace engineering and robotics. However, biom* is not always successful and only sporadically applied in industry. The reason is that a systematic approach to biom* remains at large, despite the existence of a plethora of methods and design tools. In recent years computational tools have been proposed as well, which can potentially support a systematic integration of relevant biological knowledge during biom*. However, these so-called Computer-Aided Biom* (CAB) tools have not been able to fill all the gaps in the biom* process. This thesis investigates why existing CAB tools fail, proposes a novel approach – based on Information Extraction – and develops a proof-of-concept for a CAB tool that does enable a systematic approach to biom*. Key contributions include: 1) a disquisition of existing tools guides the selection of a strategy for systematic CAB, 2) a dataset of 1,500 manually-annotated sentences, 3) a novel Information Extraction approach that combines the outputs from a supervised Relation Extraction system and an existing Open Information Extraction system. The implemented exploratory approach indicates that it is possible to extract a focused selection of relations from scientific texts with reasonable accuracy, without imposing limitations on the types of information extracted. Furthermore, the tool developed in this thesis is shown to i) speed up a trade-off analysis by domain-experts, and ii) also improve the access to biology information for non-exper

    Computer-Aided Biomimetics : Semi-Open Relation Extraction from scientific biological texts

    Get PDF
    Engineering inspired by biology – recently termed biom* – has led to various groundbreaking technological developments. Example areas of application include aerospace engineering and robotics. However, biom* is not always successful and only sporadically applied in industry. The reason is that a systematic approach to biom* remains at large, despite the existence of a plethora of methods and design tools. In recent years computational tools have been proposed as well, which can potentially support a systematic integration of relevant biological knowledge during biom*. However, these so-called Computer-Aided Biom* (CAB) tools have not been able to fill all the gaps in the biom* process. This thesis investigates why existing CAB tools fail, proposes a novel approach – based on Information Extraction – and develops a proof-of-concept for a CAB tool that does enable a systematic approach to biom*. Key contributions include: 1) a disquisition of existing tools guides the selection of a strategy for systematic CAB, 2) a dataset of 1,500 manually-annotated sentences, 3) a novel Information Extraction approach that combines the outputs from a supervised Relation Extraction system and an existing Open Information Extraction system. The implemented exploratory approach indicates that it is possible to extract a focused selection of relations from scientific texts with reasonable accuracy, without imposing limitations on the types of information extracted. Furthermore, the tool developed in this thesis is shown to i) speed up a trade-off analysis by domain-experts, and ii) also improve the access to biology information for nonexperts

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Alzheimer’s Dementia Recognition Through Spontaneous Speech

    Get PDF

    Spin: Lexical Semantics, Transitivity, and the Identification of Implicit Sentiment

    Get PDF
    Current interest in automatic sentiment analysis is motivated by a variety of information requirements. The vast majority of work in sentiment analysis has been specifically targeted at detecting subjective statements and mining opinions. This dissertation focuses on a different but related problem that to date has received relatively little attention in NLP research: detecting implicit sentiment, or spin, in text. This text classification task is distinguished from other sentiment analysis work in that there is no assumption that the documents to be classified with respect to sentiment are necessarily overt expressions of opinion. They rather are documents that might reveal a perspective. This dissertation describes a novel approach to the identification of implicit sentiment, motivated by ideas drawn from the literature on lexical semantics and argument structure, supported and refined through psycholinguistic experimentation. A relationship predictive of sentiment is established for components of meaning that are thought to be drivers of verbal argument selection and linking and to be arbiters of what is foregrounded or backgrounded in discourse. In computational experiments employing targeted lexical selection for verbs and nouns, a set of features reflective of these components of meaning is extracted for the terms. As observable proxies for the underlying semantic components, these features are exploited using machine learning methods for text classification with respect to perspective. After initial experimentation with manually selected lexical resources, the method is generalized to require no manual selection or hand tuning of any kind. The robustness of this linguistically motivated method is demonstrated by successfully applying it to three distinct text domains under a number of different experimental conditions, obtaining the best classification accuracies yet reported for several sentiment classification tasks. A novel graph-based classifier combination method is introduced which further improves classification accuracy by integrating statistical classifiers with models of inter-document relationships
    corecore