1,770 research outputs found

    Bayesian Cue Integration as a Developmental Outcome of Reward Mediated Learning

    Get PDF
    Average human behavior in cue combination tasks is well predicted by Bayesian inference models. As this capability is acquired over developmental timescales, the question arises, how it is learned. Here we investigated whether reward dependent learning, that is well established at the computational, behavioral, and neuronal levels, could contribute to this development. It is shown that a model free reinforcement learning algorithm can indeed learn to do cue integration, i.e. weight uncertain cues according to their respective reliabilities and even do so if reliabilities are changing. We also consider the case of causal inference where multimodal signals can originate from one or multiple separate objects and should not always be integrated. In this case, the learner is shown to develop a behavior that is closest to Bayesian model averaging. We conclude that reward mediated learning could be a driving force for the development of cue integration and causal inference

    Multisensory interactive technologies for primary education: From science to technology

    Get PDF
    While technology is increasingly used in the classroom, we observe at the same time that making teachers and students accept it is more difficult than expected. In this work, we focus on multisensory technologies and we argue that the intersection between current challenges in pedagogical practices and recent scientific evidence opens novel opportunities for these technologies to bring a significant benefit to the learning process. In our view, multisensory technologies are ideal for effectively supporting an embodied and enactive pedagogical approach exploiting the best-suited sensory modality to teach a concept at school. This represents a great opportunity for designing technologies, which are both grounded on robust scientific evidence and tailored to the actual needs of teachers and students. Based on our experience in technology-enhanced learning projects, we propose six golden rules we deem important for catching this opportunity and fully exploiting it

    Diagnostic Palpation in Osteopathic Medicine: A Putative Neurocognitive Model of Expertise

    Get PDF
    This thesis examines the extent to which the development of expertise in diagnostic palpation in osteopathic medicine is associated with changes in cognitive processing. Chapter 2 and Chapter 3 review, respectively, the literature on the role of analytical and non-analytical processing in osteopathic and medical clinical decision making; and the relevant research on the use of vision and haptics and the development of expertise within the context of an osteopathic clinical examination. The two studies reported in Chapter 4 examined the mental representation of knowledge and the role of analogical reasoning in osteopathic clinical decision making. The results reported there demonstrate that the development of expertise in osteopathic medicine is associated with the processes of knowledge encapsulation and script formation. The four studies reported in Chapters 5 and 6 investigate the way in which expert osteopaths use their visual and haptic systems in the diagnosis of somatic dysfunction. The results suggest that ongoing clinical practice enables osteopaths to combine visual and haptic sensory signals in a more efficient manner. Such visuo-haptic sensory integration is likely to be facilitated by top-down processing associated with visual, tactile, and kinaesthetic mental imagery. Taken together, the results of the six studies reported in this thesis indicate that the development of expertise in diagnostic palpation in osteopathic medicine is associated with changes in cognitive processing. Whereas the experts’ diagnostic judgments are heavily influenced by top-down, non-analytical processing; students rely, primarily, on bottom-up sensory processing from vision and haptics. Ongoing training and clinical practice are likely to lead to changes in the clinician’s neurocognitive architecture. This thesis proposes an original model of expertise in diagnostic palpation which has implications for osteopathic education. Students and clinicians should be encouraged to appraise the reliability of different sensory cues in the context of clinical examination, combine sensory data from different channels, and consider using both analytical and nonanalytical reasoning in their decision making. Importantly, they should develop their skills of criticality and their ability to reflect on, and analyse their practice experiences in and on action
    • …
    corecore