18 research outputs found

    Advances in Nanomaterials in Biomedicine

    Get PDF
    Advances in Nanomaterials in Biomedicine” provided a platform for more than 110 researchers from different countries to present their latest investigations in various fields of nanotechnology, new methods and nanomaterials intended for medical applications. Modern achievements in the field of nanoparticle-based diagnostics, drug delivery and the use of various nanomaterials in the treatment of diseases are presented in 11 original articles. The published reviews provide a comprehensive analysis of the current information on the use of nanomedicine in the treatment and diagnosis of cancer and liver fibrosis, in the field of solid tissue engineering and in drug delivery systems

    Plant Therapeutics

    Get PDF
    This Special Issue provides recent advances in the use of plants for therapeutic purposes. This Special Issue collected the plants, including leaf, fruit, and others. This Special Issue's targets were crude plant extract and active principle purified from the plant. This Special Issue prompted researchers to provide each plant discovery. We are pleased to include in this Special Issue the screened Mexican plants and the halophytic plants growing in central Saudi Arabia, and so on. As a result, we have sparked scientists' interest in studying the plant for therapeutic purposes. This field necessitates network pharmacology analysis and machine-aided learning. Many disorders resistant to modern medication are looking for active principles isolated from the plants all over the world

    Therapeutic Potential of Plant Secondary Metabolites in the Treatment of Diseases and Drug Development

    Get PDF
    The importance of natural products, and especially plant secondary metabolites, for the treatment of diseases and drug development has already been obvious in medicine for several thousand years. Thus, this Special Issue of MDPI Biomedicines collects eight top articles from the field as regular full papers in addition to five reviews. All of the published papers are a vibrant source of information on the therapeutic potential of plant secondary metabolites in the treatment of diseases and drug development

    Current Insights on Lipid-Based Nanosystems

    Get PDF
    Lipid-based nanosystems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), cationic lipid nanoparticles, nanoemulsions, and liposomes, have been extensively studied to improve drug delivery through different administration routes. The main advantages of these systems are their ability to protect, transport, and control the release of lipophilic and hydrophilic molecules (either small-molecular-weight molecules or macromolecules); the use of generally recognized as safe (GRAS) excipients that minimize the toxicity of the formulations; and the possibility to modulate pharmacokinetics and enable the site-specific delivery of encapsulated payloads. In addition, the versatility of lipid-based nanosystems has further been demonstrated for the delivery of vaccines, the protection of active cosmetic ingredients, and the improvement of moisturizing properties of cosmetic formulations.Lipid-based nanosystems are well established and there are already different commercially approved formulations for various human disorders. This success has paved the way for the diversification of the pipeline of development, to address unmet medical needs for several indications, such as cancer, neurological disorders, and autoimmune, genetic, and infectious diseases.This Special Issue aims to update readers on the latest research on lipid-based nanosystems, both at the preclinical and clinical levels. A series of 15 articles (six reviews and nine studies) is presented, with authors from 12 different countries, showing the globality of the investigations that are being carried out in this area

    Current Insights on Lipid-Based Nanosystems

    Get PDF
    Lipid-based nanosystems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), cationic lipid nanoparticles, nanoemulsions, and liposomes, have been extensively studied to improve drug delivery through different administration routes. The main advantages of these systems are their ability to protect, transport, and control the release of lipophilic and hydrophilic molecules (either small-molecular-weight molecules or macromolecules); the use of generally recognized as safe (GRAS) excipients that minimize the toxicity of the formulations; and the possibility to modulate pharmacokinetics and enable the site-specific delivery of encapsulated payloads. In addition, the versatility of lipid-based nanosystems has further been demonstrated for the delivery of vaccines, the protection of active cosmetic ingredients, and the improvement of moisturizing properties of cosmetic formulations.Lipid-based nanosystems are well established and there are already different commercially approved formulations for various human disorders. This success has paved the way for the diversification of the pipeline of development, to address unmet medical needs for several indications, such as cancer, neurological disorders, and autoimmune, genetic, and infectious diseases.This Special Issue aims to update readers on the latest research on lipid-based nanosystems, both at the preclinical and clinical levels. A series of 15 articles (six reviews and nine studies) is presented, with authors from 12 different countries, showing the globality of the investigations that are being carried out in this area

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence

    Dichotomic role of NAADP/two-pore channel 2/Ca2+ signaling in regulating neural differentiation of mouse embryonic stem cells

    Get PDF
    Poster Presentation - Stem Cells and Pluripotency: abstract no. 1866The mobilization of intracellular Ca2+stores is involved in diverse cellular functions, including cell proliferation and differentiation. At least three endogenous Ca2+mobilizing messengers have been identified, including inositol trisphosphate (IP3), cyclic adenosine diphosphoribose (cADPR), and nicotinic adenine acid dinucleotide phosphate (NAADP). Similar to IP3, NAADP can mobilize calcium release in a wide variety of cell types and species, from plants to animals. Moreover, it has been previously shown that NAADP but not IP3-mediated Ca2+increases can potently induce neuronal differentiation in PC12 cells. Recently, two pore channels (TPCs) have been identified as a novel family of NAADP-gated calcium release channels in endolysosome. Therefore, it is of great interest to examine the role of TPC2 in the neural differentiation of mouse ES cells. We found that the expression of TPC2 is markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebound during the late stages of neurogenesis. Correspondingly, perturbing the NAADP signaling by TPC2 knockdown accelerates mouse ES cell differentiation into neural progenitors but inhibits these neural progenitors from committing to the final neural lineage. Interestingly, TPC2 knockdown has no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Overexpression of TPC2, on the other hand, inhibits mouse ES cell from entering the neural lineage. Taken together, our data indicate that the NAADP/TPC2-mediated Ca2+signaling pathway plays a temporal and dichotomic role in modulating the neural lineage entry of ES cells; in that NAADP signaling antagonizes ES cell entry to early neural progenitors, but promotes late neural differentiation.postprin

    Novel Antibacterial Agents

    Get PDF
    This book was devoted to the latest advances achieved in the antibacterial field, with a focus on the recent efforts made to develop new antimicrobial agents with novel modes of action, and a perspective on future directions of this line of research. Antimicrobial resistance has become a major threat to global health, and the twenty-two published articles here reported put in evidence that the discovery and development of new antibiotics are extremely challenging. The antimicrobial research covers a wide area, spanning from the design of new compounds, also supported by molecular modeling techniques, their synthesis and characterization, and biological tests.In this context, the current crisis caused by the COVID-19 pandemic, but also older threats, such as the human immunodeficiency virus or the hepatitis C virus, require greater attention than ever.The research works described in this book provide an extremely useful example of the results achieved in the field of antibacterial drug development. The search for new chemical entities was approached starting from both natural and synthetic compounds and addressing different targets. In addition, recent findings were presented and discussed highlighting the strategies to fight bacterial resistance. Detailed references to the state-of-the-art can be found in this book.We strongly encourage the wide group of readers to explore the book that we are presenting, to get inspired to develop new approaches for the diagnosis and treatment of antibacterial diseases, and to circumvent resistance issues

    Antioxidant and DPPH-Scavenging Activities of Compounds and Ethanolic Extract of the Leaf and Twigs of Caesalpinia bonduc L. Roxb.

    Get PDF
    Antioxidant effects of ethanolic extract of Caesalpinia bonduc and its isolated bioactive compounds were evaluated in vitro. The compounds included two new cassanediterpenes, 1α,7α-diacetoxy-5α,6β-dihydroxyl-cass-14(15)-epoxy-16,12-olide (1)and 12α-ethoxyl-1α,14β-diacetoxy-2α,5α-dihydroxyl cass-13(15)-en-16,12-olide(2); and others, bonducellin (3), 7,4’-dihydroxy-3,11-dehydrohomoisoflavanone (4), daucosterol (5), luteolin (6), quercetin-3-methyl ether (7) and kaempferol-3-O-α-L-rhamnopyranosyl-(1Ç2)-β-D-xylopyranoside (8). The antioxidant properties of the extract and compounds were assessed by the measurement of the total phenolic content, ascorbic acid content, total antioxidant capacity and 1-1-diphenyl-2-picryl hydrazyl (DPPH) and hydrogen peroxide radicals scavenging activities.Compounds 3, 6, 7 and ethanolic extract had DPPH scavenging activities with IC50 values of 186, 75, 17 and 102 μg/ml respectively when compared to vitamin C with 15 μg/ml. On the other hand, no significant results were obtained for hydrogen peroxide radical. In addition, compound 7 has the highest phenolic content of 0.81±0.01 mg/ml of gallic acid equivalent while compound 8 showed the highest total antioxidant capacity with 254.31±3.54 and 199.82±2.78 μg/ml gallic and ascorbic acid equivalent respectively. Compound 4 and ethanolic extract showed a high ascorbic acid content of 2.26±0.01 and 6.78±0.03 mg/ml respectively.The results obtained showed the antioxidant activity of the ethanolic extract of C. bonduc and deduced that this activity was mediated by its isolated bioactive compounds

    Sewage sludge heavy metal analysis and agricultural prospects for Fiji

    Get PDF
    Insoluble residues produced in Waste Water Treatment Plants (WWTP) as by products are known as sewage sludge (SS). Land application of SS, particularly in agricultural lands, is becoming an alternative disposal method in Fiji. However, currently there is no legislative framework governing its use. SS together with its high nutrient and organic matter contents, constitutes some undesired pollutants such as heavy metals, which may limit its extensive use. The focus of this study therefore was to determine the total concentrations of Pb, Zn, Cd, Cu, Cr, Ni and Mn in the SS produced at the Kinoya WWTP (Fiji) and in the non-fertile soil amended with the SS at 20, 40, 60, 80% application rates and in the control (100% Soil). The bioavailable heavy metals were also determined as it depicts the true extent of metal contamination. The treatment mixtures were then used to cultivate cabbage plants in which the total heavy metal uptake was investigated. Total Zn (695.6 mg/kg) was present in the highest amounts in the 100% SS (control), followed by Pb (370.9 mg/kg), Mn (35.0 mg/kg), Cu (65.5 mg/kg), Cr (20.5 mg/kg) and finally Cd (13.5 mg/kg) and hence a similar trend was seen in all treatment mixtures. The potential mobility of sludgeborne heavy metals can be classified as Ni > Cu > Cd > Zn > Mn > Cr > Pb. Total metal uptake in plant leaves and stems showed only the bioavailable metals Cu, Cd, Zn and Mn, with maximum uptake occurring in the leaves. Ni, despite being highly mobile was not detected, due to minute concentrations in the SS treatments. Optimum growth occurred in the 20 and 40% SS treatments. However maximum Cu and Mn uptake occurred in the 40% SS treatment thereby making the 20% treatment the most feasible. Furthermore the total and bioavailable metal concentrations observed were within the safe and permitted limits of the EEC and USEPA legislations
    corecore