22,229 research outputs found

    Exploration of unknown environments using a compass, topological map and neural network

    Get PDF
    This paper addresses the problem of autonomous exploration and mapping of unknown environments by a mobile robot. A map-based exploration system is presented, in which a topological map of the environment is acquired incrementally by the robot, using an artificial neural network to detect new areas of unexplored territory. Using this approach, no manual intervention in the map acquisition process is required, and all computation is carried out in real-time on board the robot. Experiments are presented in which a Nomad 200 robot successfully mapped and navigated complex, real world environments containing transient changes such as moving people

    Collective Lévy walk for efficient exploration in unknown environments

    Get PDF
    One of the key tasks of autonomous mobile robots is to explore the unknown environment under limited energy and deadline conditions. In this paper, we focus on one of the most efficient random walks found in the natural and biological system, i.e., Lévy walk. We show how Lévy properties disappear in larger robot swarm sizes because of spatial interferences and propose a novel behavioral algorithm to preserve Lévy properties at the collective level. Our initial findings hold potential to accelerate target search processes in large unknown environments by parallelizing Lévy exploration using a group of robots

    A Constant-Factor Approximation Algorithm for Online Coverage Path Planning with Energy Constraint

    Full text link
    In this paper, we study the problem of coverage planning by a mobile robot with a limited energy budget. The objective of the robot is to cover every point in the environment while minimizing the traveled path length. The environment is initially unknown to the robot. Therefore, it needs to avoid the obstacles in the environment on-the-fly during the exploration. As the robot has a specific energy budget, it might not be able to cover the complete environment in one traversal. Instead, it will need to visit a static charging station periodically in order to recharge its energy. To solve the stated problem, we propose a budgeted depth-first search (DFS)-based exploration strategy that helps the robot to cover any unknown planar environment while bounding the maximum path length to a constant-factor of the shortest-possible path length. Our O(1)O(1)-approximation guarantee advances the state-of-the-art of log-approximation for this problem. Simulation results show that our proposed algorithm outperforms the current state-of-the-art algorithm both in terms of the traveled path length and run time in all the tested environments with concave and convex obstacles

    Coordinated Exploration of unknown labyrinthine environments applied to the Pusruite-Evasion problem

    No full text
    International audienceThis paper introduces a multi-robot cooperation approach to solve the "pursuit evasion'' problem for mobile robots that have omni-directional vision sensors in unknown environments. The main characteristic of this approach is based on the robots cooperation by sharing knowledge and making them work as a team: a complete algorithm for computing robots motion strategy is presented as well as the deliberation protocol which distributes the exploration task among the team and takes the best possible outcome from the robots resources

    Efficient exploration of unknown indoor environments using a team of mobile robots

    Get PDF
    Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels
    corecore