205 research outputs found

    MIMOPack: A High Performance Computing Library for MIMO Communication Systems

    Full text link
    [EN] Nowadays, several communication standards are emerging and evolving, searching higher transmission rates, reliability and coverage. This expansion is primarily driven by the continued increase in consumption of mobile multimedia services due to the emergence of new handheld devices such as smartphones and tablets. One of the most significant techniques employed to meet these demands is the use of multiple transmit and receive antennas, known as MIMO systems. The use of this technology allows to increase the transmission rate and the quality of the transmission through the use of multiple antennas at the transmitter and receiver sides. MIMO technologies have become an essential key in several wireless standards such as WLAN, WiMAX and LTE. These technologies will be incorporated also in future standards, therefore is expected in the coming years a great deal of research in this field. Clearly, the study of MIMO systems is critical in the current investigation, however the problems that arise from this technology are very complex. High Performance Computing (HPC) systems, and specifically, modern hardware architectures as multi-core and many-cores (e.g Graphics Processing Units (GPU)) are playing a key role in the development of efficient and low-complexity algorithms for MIMO transmissions. Proof of this is that the number of scientific contributions and research projects related to its use has increased in the last years. Also, some high performance libraries have been implemented as tools for researchers involved in the development of future communication standards. Two of the most popular libraries are: IT++ that is a library based on the use of some optimized libraries for multi-core processors and the Communications System Toolbox designed for use with MATLAB, which uses GPU computing. However, there is not a library able to run on a heterogeneous platform using all the available resources. In view of the high computational requirements in MIMO application research and the shortage of tools able to satisfy them, we have made a special effort to develop a library to ease the development of adaptable parallel applications in accordance with the different architectures of the executing platform. The library, called MIMOPack, aims to implement efficiently using parallel computing, a set of functions to perform some of the critical stages of MIMO communication systems simulation. The main contribution of the thesis is the implementation of efficient Hard and Soft output detectors, since the detection stage is considered the most complex part of the communication process. These detectors are highly configurable and many of them include preprocessing techniques that reduce the computational cost and increase the performance. The proposed library shows three important features: portability, efficiency and easy of use. Current realease allows GPUs and multi-core computation, or even simultaneously, since it is designed to use on heterogeneous machines. The interface of the functions are common to all environments in order to simplify the use of the library. Moreover, some of the functions are callable from MATLAB increasing the portability of developed codes between different computing environments. According to the library design and the performance assessment, we consider that MIMOPack may facilitate industrial and academic researchers the implementation of scientific codes without having to know different programming languages and machine architectures. This will allow to include more complex algorithms in their simulations and obtain their results faster. This is particularly important in the industry, since the manufacturers work to analyze and to propose their own technologies with the aim that it will be approved as a standard. Thus allowing to enforce their intellectual property rights over their competitors, who should obtain the corresponding licenses to include these technologies into their products.[ES] En la actualidad varios estándares de comunicación están surgiendo buscando velocidades de transmisión más altas y mayor fiabilidad. Esta expansión está impulsada por el aumento en el consumo de servicios multimedia debido a la aparición de nuevos dispositivos como los smartphones y las tabletas. Una de las técnicas empleadas más importantes es el uso de múltiples antenas de transmisión y recepción, conocida como sistemas MIMO, que permite aumentar la velocidad y la calidad de la transmisión. Las tecnologías MIMO se han convertido en una parte esencial en diferentes estándares tales como WLAN, WiMAX y LTE. Estas tecnologías se incorporarán también en futuros estándares, por lo tanto, se espera en los próximos años una gran cantidad de investigación en este campo. Está claro que el estudio de los sistemas MIMO es crítico en la investigación actual, sin embargo los problemas que surgen de esta tecnología son muy complejos. La sistemas de computación de alto rendimiento, y en concreto, las arquitecturas hardware actuales como multi-core y many-core (p. ej. GPUs) están jugando un papel clave en el desarrollo de algoritmos eficientes y de baja complejidad en las transmisiones MIMO. Prueba de ello es que el número de contribuciones científicas y proyectos de investigación relacionados con su uso se han incrementado en el últimos años. Algunas librerías de alto rendimiento se están utilizando como herramientas por investigadores en el desarrollo de futuros estándares. Dos de las librerías más destacadas son: IT++ que se basa en el uso de distintas librerías optimizadas para procesadores multi-core y el paquete Communications System Toolbox diseñada para su uso con MATLAB, que utiliza computación con GPU. Sin embargo, no hay una biblioteca capaz de ejecutarse en una plataforma heterogénea. En vista de los altos requisitos computacionales en la investigación MIMO y la escasez de herramientas capaces de satisfacerlos, hemos implementado una librería que facilita el desarrollo de aplicaciones paralelas adaptables de acuerdo con las diferentes arquitecturas de la plataforma de ejecución. La librería, llamada MIMOPack, implementa de manera eficiente un conjunto de funciones para llevar a cabo algunas de las etapas críticas en la simulación de un sistema de comunicación MIMO. La principal aportación de la tesis es la implementación de detectores eficientes de salida Hard y Soft, ya que la etapa de detección es considerada la parte más compleja en el proceso de comunicación. Estos detectores son altamente configurables y muchos de ellos incluyen técnicas de preprocesamiento que reducen el coste computacional y aumentan el rendimiento. La librería propuesta tiene tres características importantes: la portabilidad, la eficiencia y facilidad de uso. La versión actual permite computación en GPU y multi-core, incluso simultáneamente, ya que está diseñada para ser utilizada sobre plataformas heterogéneas que explotan toda la capacidad computacional. Para facilitar el uso de la biblioteca, las interfaces de las funciones son comunes para todas las arquitecturas. Algunas de las funciones se pueden llamar desde MATLAB aumentando la portabilidad de códigos desarrollados entre los diferentes entornos. De acuerdo con el diseño de la biblioteca y la evaluación del rendimiento, consideramos que MIMOPack puede facilitar la implementación de códigos sin tener que saber programar con diferentes lenguajes y arquitecturas. MIMOPack permitirá incluir algoritmos más complejos en las simulaciones y obtener los resultados más rápidamente. Esto es particularmente importante en la industria, ya que los fabricantes trabajan para proponer sus propias tecnologías lo antes posible con el objetivo de que sean aprobadas como un estándar. De este modo, los fabricantes pueden hacer valer sus derechos de propiedad intelectual frente a sus competidores, quienes luego deben obtener las correspon[CA] En l'actualitat diversos estàndards de comunicació estan sorgint i evolucionant cercant velocitats de transmissió més altes i major fiabilitat. Aquesta expansió, està impulsada pel continu augment en el consum de serveis multimèdia a causa de l'aparició de nous dispositius portàtils com els smartphones i les tablets. Una de les tècniques més importants és l'ús de múltiples antenes de transmissió i recepció (MIMO) que permet augmentar la velocitat de transmissió i la qualitat de transmissió. Les tecnologies MIMO s'han convertit en una part essencial en diferents estàndards inalàmbrics, tals com WLAN, WiMAX i LTE. Aquestes tecnologies s'incorporaran també en futurs estàndards, per tant, s'espera en els pròxims anys una gran quantitat d'investigació en aquest camp. L'estudi dels sistemes MIMO és crític en la recerca actual, no obstant açó, els problemes que sorgeixen d'aquesta tecnologia són molt complexos. Els sistemes de computació d'alt rendiment com els multi-core i many-core (p. ej. GPUs)), estan jugant un paper clau en el desenvolupament d'algoritmes eficients i de baixa complexitat en les transmissions MIMO. Prova d'açò és que el nombre de contribucions científiques i projectes d'investigació relacionats amb el seu ús s'han incrementat en els últims anys. Algunes llibreries d'alt rendiment estan utilitzant-se com a eines per investigadors involucrats en el desenvolupament de futurs estàndards. Dos de les llibreries més destacades són: IT++ que és una llibreria basada en lús de diferents llibreries optimitzades per a processadors multi-core i el paquet Communications System Toolbox dissenyat per al seu ús amb MATLAB, que utilitza computació amb GPU. No obstant açò, no hi ha una biblioteca capaç d'executar-se en una plataforma heterogènia. Degut als alts requisits computacionals en la investigació MIMO i l'escacès d'eines capaces de satisfer-los, hem implementat una llibreria que facilita el desenvolupament d'aplicacions paral·leles adaptables d'acord amb les diferentes arquitectures de la plataforma d'ejecució. La llibreria, anomenada MIMOPack, implementa de manera eficient, un conjunt de funcions per dur a terme algunes de les etapes crítiques en la simulació d'un sistema de comunicació MIMO. La principal aportació de la tesi és la implementació de detectors eficients d'exida Hard i Soft, ja que l'etapa de detecció és considerada la part més complexa en el procés de comunicació. Estos detectors són altament configurables i molts d'ells inclouen tècniques de preprocessament que redueixen el cost computacional i augmenten el rendiment. La llibreria proposta té tres característiques importants: la portabilitat, l'eficiència i la facilitat d'ús. La versió actual permet computació en GPU i multi-core, fins i tot simultàniament, ja que està dissenyada per a ser utilitzada sobre plataformes heterogènies que exploten tota la capacitat computacional. Amb el fi de simplificar l'ús de la biblioteca, les interfaces de les funcions són comunes per a totes les arquitectures. Algunes de les funcions poden ser utilitzades des de MATLAB augmentant la portabilitat de còdics desenvolupats entre els diferentes entorns. D'acord amb el disseny de la biblioteca i l'evaluació del rendiment, considerem que MIMOPack pot facilitar la implementació de còdics a investigadors sense haver de saber programar amb diferents llenguatges i arquitectures. MIMOPack permetrà incloure algoritmes més complexos en les seues simulacions i obtindre els seus resultats més ràpid. Açò és particularment important en la industria, ja que els fabricants treballen per a proposar les seues pròpies tecnologies el més prompte possible amb l'objectiu que siguen aprovades com un estàndard. D'aquesta menera, els fabricants podran fer valdre els seus drets de propietat intel·lectual enfront dels seus competidors, els qui després han d'obtenir les corresponents llicències si voleRamiro Sánchez, C. (2015). MIMOPack: A High Performance Computing Library for MIMO Communication Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53930TESISPremios Extraordinarios de tesis doctorale

    Baseband Processing for 5G and Beyond: Algorithms, VLSI Architectures, and Co-design

    Get PDF
    In recent years the number of connected devices and the demand for high data-rates have been significantly increased. This enormous growth is more pronounced by the introduction of the Internet of things (IoT) in which several devices are interconnected to exchange data for various applications like smart homes and smart cities. Moreover, new applications such as eHealth, autonomous vehicles, and connected ambulances set new demands on the reliability, latency, and data-rate of wireless communication systems, pushing forward technology developments. Massive multiple-input multiple-output (MIMO) is a technology, which is employed in the 5G standard, offering the benefits to fulfill these requirements. In massive MIMO systems, base station (BS) is equipped with a very large number of antennas, serving several users equipments (UEs) simultaneously in the same time and frequency resource. The high spatial multiplexing in massive MIMO systems, improves the data rate, energy and spectral efficiencies as well as the link reliability of wireless communication systems. The link reliability can be further improved by employing channel coding technique. Spatially coupled serially concatenated codes (SC-SCCs) are promising channel coding schemes, which can meet the high-reliability demands of wireless communication systems beyond 5G (B5G). Given the close-to-capacity error correction performance and the potential to implement a high-throughput decoder, this class of code can be a good candidate for wireless systems B5G. In order to achieve the above-mentioned advantages, sophisticated algorithms are required, which impose challenges on the baseband signal processing. In case of massive MIMO systems, the processing is much more computationally intensive and the size of required memory to store channel data is increased significantly compared to conventional MIMO systems, which are due to the large size of the channel state information (CSI) matrix. In addition to the high computational complexity, meeting latency requirements is also crucial. Similarly, the decoding-performance gain of SC-SCCs also do come at the expense of increased implementation complexity. Moreover, selecting the proper choice of design parameters, decoding algorithm, and architecture will be challenging, since spatial coupling provides new degrees of freedom in code design, and therefore the design space becomes huge. The focus of this thesis is to perform co-optimization in different design levels to address the aforementioned challenges/requirements. To this end, we employ system-level characteristics to develop efficient algorithms and architectures for the following functional blocks of digital baseband processing. First, we present a fast Fourier transform (FFT), an inverse FFT (IFFT), and corresponding reordering scheme, which can significantly reduce the latency of orthogonal frequency-division multiplexing (OFDM) demodulation and modulation as well as the size of reordering memory. The corresponding VLSI architectures along with the application specific integrated circuit (ASIC) implementation results in a 28 nm CMOS technology are introduced. In case of a 2048-point FFT/IFFT, the proposed design leads to 42% reduction in the latency and size of reordering memory. Second, we propose a low-complexity massive MIMO detection scheme. The key idea is to exploit channel sparsity to reduce the size of CSI matrix and eventually perform linear detection followed by a non-linear post-processing in angular domain using the compressed CSI matrix. The VLSI architecture for a massive MIMO with 128 BS antennas and 16 UEs along with the synthesis results in a 28 nm technology are presented. As a result, the proposed scheme reduces the complexity and required memory by 35%–73% compared to traditional detectors while it has better detection performance. Finally, we perform a comprehensive design space exploration for the SC-SCCs to investigate the effect of different design parameters on decoding performance, latency, complexity, and hardware cost. Then, we develop different decoding algorithms for the SC-SCCs and discuss the associated decoding performance and complexity. Also, several high-level VLSI architectures along with the corresponding synthesis results in a 12 nm process are presented, and various design tradeoffs are provided for these decoding schemes

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector

    Datacenter Design for Future Cloud Radio Access Network.

    Full text link
    Cloud radio access network (C-RAN), an emerging cloud service that combines the traditional radio access network (RAN) with cloud computing technology, has been proposed as a solution to handle the growing energy consumption and cost of the traditional RAN. Through aggregating baseband units (BBUs) in a centralized cloud datacenter, C-RAN reduces energy and cost, and improves wireless throughput and quality of service. However, designing a datacenter for C-RAN has not yet been studied. In this dissertation, I investigate how a datacenter for C-RAN BBUs should be built on commodity servers. I first design WiBench, an open-source benchmark suite containing the key signal processing kernels of many mainstream wireless protocols, and study its characteristics. The characterization study shows that there is abundant data level parallelism (DLP) and thread level parallelism (TLP). Based on this result, I then develop high performance software implementations of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addition, I generalize the GPU parallelization techniques of the Turbo decoder to the trellis algorithms, an important family of algorithms that are widely used in data compression and channel coding. Then I evaluate the performance of commodity CPU servers and GPU servers. The study shows that the datacenter with GPU servers can meet the LTE standard throughput with 4× to 16× fewer machines than with CPU servers. A further energy and cost analysis show that GPU servers can save on average 13× more energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using GPUs as a server platform. Next I study resource management techniques to handle the temporal and spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing” power management that combines powering-off GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a practical traffic model, this technique saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial traffic imbalance, I propose three workload distribution techniques to improve load balance and throughput. Among all three techniques, pipelining packets has the most throughput improvement at 10% and 16% for balanced and unbalanced loads, respectively.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120825/1/qizheng_1.pd

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Implementation of a fully-parallel turbo decoder on a general-purpose graphics processing unit

    No full text
    Turbo codes comprising a parallel concatenation of upper and lower convolutional codes are widely employed in state-of-the-art wireless communication standards, since they facilitate transmission throughputs that closely approach the channel capacity. However, this necessitates high processing throughputs in order for the turbo code to support real-time communications. In stateof- the-art turbo code implementations, the processing throughput is typically limited by the data dependencies that occur within the forward and backward recursions of the Log-BCJR algorithm, which is employed during turbo decoding. In contrast to the highly-serial Log-BCJR turbo decoder, we have recently proposed a novel Fully Parallel Turbo Decoder (FPTD) algorithm, which can eliminate the data dependencies and perform fully parallel processing. In this paper, we propose an optimized FPTD algorithm, which reformulates the operation of the FPTD algorithm so that the upper and lower decoders have identical operation, in order to support Single Instruction Multiple Data (SIMD) operation. This allows us to develop a novel General Purpose Graphics Processing Unit (GPGPU) implementation of the FPTD, which has application in Software-Defined Radios (SDRs) and virtualized Cloud- Radio Access Networks (C-RANs). As a benefit of its higher degree of parallelism, we show that our FPTD improves the higher processing throughput of the Log-BCJR turbo decoder by between 2.3 and 9.2 times, when employing a high-specification GPGPU. However, this is achieved at the cost of a moderate increase of the overall complexity by between 1.7 and 3.3 times

    Software Defined Radio Solutions for Wireless Communications Systems

    Get PDF
    Wireless technologies have been advancing rapidly, especially in the recent years. Design, implementation, and manufacturing of devices supporting the continuously evolving technologies require great efforts. Thus, building platforms compatible with different generations of standards and technologies has gained a lot of interest. As a result, software defined radios (SDRs) are investigated to offer more flexibility and scalability, and reduce the design efforts, compared to the conventional fixed-function hardware-based solutions.This thesis mainly addresses the challenges related to SDR-based implementation of today’s wireless devices. One of the main targets of most of the wireless standards has been to improve the achievable data rates, which imposes strict requirements on the processing platforms. Realizing real-time processing of high throughput signal processing algorithms using SDR-based platforms while maintaining energy consumption close to conventional approaches is a challenging topic that is addressed in this thesis.Firstly, this thesis concentrates on the challenges of a real-time software-based implementation for the very high throughput (VHT) Institute of Electrical and Electronics Engineers (IEEE) 802.11ac amendment from the wireless local area networks (WLAN) family, where an SDR-based solution is introduced for the frequency-domain baseband processing of a multiple-input multipleoutput (MIMO) transmitter and receiver. The feasibility of the implementation is evaluated with respect to the number of clock cycles and the consumed power. Furthermore, a digital front-end (DFE) concept is developed for the IEEE 802.11ac receiver, where the 80 MHz waveform is divided to two 40 MHz signals. This is carried out through time-domain digital filtering and decimation, which is challenging due to the latency and cyclic prefix (CP) budget of the receiver. Different multi-rate channelization architectures are developed, and the software implementation is presented and evaluated in terms of execution time, number of clock cycles, power, and energy consumption on different multi-core platforms.Secondly, this thesis addresses selected advanced techniques developed to realize inband fullduplex (IBFD) systems, which aim at improving spectral efficiency in today’s congested radio spectrum. IBFD refers to concurrent transmission and reception on the same frequency band, where the main challenge to combat is the strong self-interference (SI). In this thesis, an SDRbased solution is introduced, which is capable of real-time mitigation of the SI signal. The implementation results show possibility of achieving real-time sufficient SI suppression under time-varying environments using low-power, mobile-scale multi-core processing platforms. To investigate the challenges associated with SDR implementations for mobile-scale devices with limited processing and power resources, processing platforms suitable for hand-held devices are selected in this thesis work. On the baseband processing side, a very long instruction word (VLIW) processor, optimized for wireless communication applications, is utilized. Furthermore, in the solutions presented for the DFE processing and the digital SI canceller, commercial off-the-shelf (COTS) multi-core central processing units (CPUs) and graphics processing units (GPUs) are used with the aim of investigating the performance enhancement achieved by utilizing parallel processing.Overall, this thesis provides solutions to the challenges of low-power, and real-time software-based implementation of computationally intensive signal processing algorithms for the current and future communications systems

    Near Deterministic Signal Processing Using GPU, DPDK, and MKL

    Get PDF
    RÉSUMÉ En radio défnie par logiciel, le traitement numcrique du signal impose le traitement en temps réel des donnés et des signaux. En outre, dans le développement de systèmes de communication sans fil basées sur la norme dite Long Term Evolution (LTE), le temps réel et une faible latence des processus de calcul sont essentiels pour obtenir une bonne experience utilisateur. De plus, la latence des calculs est une clé essentielle dans le traitement LTE, nous voulons explorer si des unités de traitement graphique (GPU) peuvent être utilisées pour accélérer le traitement LTE. Dans ce but, nous explorons la technologie GPU de NVIDIA en utilisant le modéle de programmation Compute Unified Device Architecture (CUDA) pour réduire le temps de calcul associé au traitement LTE. Nous présentons briévement l'architecture CUDA et le traitement paralléle avec GPU sous Matlab, puis nous comparons les temps de calculs avec Matlab et CUDA. Nous concluons que CUDA et Matlab accélérent le temps de calcul des fonctions qui sont basées sur des algorithmes de traitement en paralléle et qui ont le même type de données, mais que cette accélération est fortement variable en fonction de l'algorithme implanté. Intel a proposé une boite à outil pour le développement de plan de données (DPDK) pour faciliter le développement des logiciels de haute performance pour le traitement des fonctionnalités de télécommunication. Dans ce projet, nous explorons son utilisation ainsi que celle de l'isolation du système d'exploitation pour réduire la variabilité des temps de calcul des processus de LTE. Plus précisément, nous utilisons DPDK avec la Math Kernel Library (MKL) pour calculer la transformée de Fourier rapide (FFT) associée avec le processus LTE et nous mesurons leur temps de calcul. Nous évaluons quatre cas: 1) code FFT dans le cœur esclave sans isolation du CPU, 2) code FFT dans le cœur esclave avec l'isolation du CPU, 3) code FFT utilisant MKL sans DPDK et 4) code FFT de base. Nous combinons DPDK et MKL pour les cas 1 et 2 et évaluons quel cas est plus déterministe et réduit le plus la latence des processus LTE. Nous montrons que le temps de calcul moyen pour la FFT de base est environ 100 fois plus grand alors que l'écart-type est environ 20 fois plus élevé. On constate que MKL offre d'excellentes performances, mais comme il n'est pas extensible par lui-même dans le domaine infonuagique, le combiner avec DPDK est une alternative très prometteuse. DPDK permet d'améliorer la performance, la gestion de la mémoire et rend MKL évolutif.----------ABSTRACT In software defined radio, digital signal processing requires strict real time processing of data and signals. Specifically, in the development of the Long Term Evolution (LTE) standard, real time and low latency of computation processes are essential to obtain good user experience. As low latency computation is critical in real time processing of LTE, we explore the possibility of using Graphics Processing Units (GPUs) to accelerate its functions. As the first contribution of this thesis, we adopt NVIDIA GPU technology using the Compute Unified Device Architecture (CUDA) programming model in order to reduce the computation times of LTE. Furthermore, we investigate the efficiency of using MATLAB for parallel computing on GPUs. This allows us to evaluate MATLAB and CUDA programming paradigms and provide a comprehensive comparison between them for parallel computing of LTE processes on GPUs. We conclude that CUDA and Matlab accelerate processing of structured basic algorithms but that acceleration is variable and depends which algorithm is involved. Intel has proposed its Data Plane Development Kit (DPDK) as a tool to develop high performance software for processing of telecommunication data. As the second contribution of this thesis, we explore the possibility of using DPDK and isolation of operating system to reduce the variability of the computation times of LTE processes. Specifically, we use DPDK along with the Math Kernel Library (MKL) provided by Intel to calculate Fast Fourier Transforms (FFT) associated with LTE processes and measure their computation times. We study the computation times in different scenarios where FFT calculation is done with and without the isolation of processing units along the use of DPDK. Our experimental analysis shows that when DPDK and MKL are simultaneously used and the processing units are isolated, the resulting processing times of FFT calculation are reduced and have a near-deterministic characteristic. Explicitly, using DPDK and MKL along with the isolation of processing units reduces the mean and standard deviation of processing times for FFT calculation by 100 times and 20 times, respectively. Moreover, we conclude that although MKL reduces the computation time of FFTs, it does not offer a scalable solution but combining it with DPDK is a promising avenue

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times
    corecore