6,799 research outputs found

    Distributional Reinforcement Learning for Efficient Exploration

    Full text link
    In distributional reinforcement learning (RL), the estimated distribution of value function models both the parametric and intrinsic uncertainties. We propose a novel and efficient exploration method for deep RL that has two components. The first is a decaying schedule to suppress the intrinsic uncertainty. The second is an exploration bonus calculated from the upper quantiles of the learned distribution. In Atari 2600 games, our method outperforms QR-DQN in 12 out of 14 hard games (achieving 483 \% average gain across 49 games in cumulative rewards over QR-DQN with a big win in Venture). We also compared our algorithm with QR-DQN in a challenging 3D driving simulator (CARLA). Results show that our algorithm achieves near-optimal safety rewards twice faster than QRDQN

    Estimating Risk and Uncertainty in Deep Reinforcement Learning

    Full text link
    Reinforcement learning agents are faced with two types of uncertainty. Epistemic uncertainty stems from limited data and is useful for exploration, whereas aleatoric uncertainty arises from stochastic environments and must be accounted for in risk-sensitive applications. We highlight the challenges involved in simultaneously estimating both of them, and propose a framework for disentangling and estimating these uncertainties on learned Q-values. We derive unbiased estimators of these uncertainties and introduce an uncertainty-aware DQN algorithm, which we show exhibits safe learning behavior and outperforms other DQN variants on the MinAtar testbed.Comment: Work presented at the ICML 2020 Workshop on Uncertainty and Robustness in Deep Learnin

    Randomized Prior Functions for Deep Reinforcement Learning

    Full text link
    Dealing with uncertainty is essential for efficient reinforcement learning. There is a growing literature on uncertainty estimation for deep learning from fixed datasets, but many of the most popular approaches are poorly-suited to sequential decision problems. Other methods, such as bootstrap sampling, have no mechanism for uncertainty that does not come from the observed data. We highlight why this can be a crucial shortcoming and propose a simple remedy through addition of a randomized untrainable `prior' network to each ensemble member. We prove that this approach is efficient with linear representations, provide simple illustrations of its efficacy with nonlinear representations and show that this approach scales to large-scale problems far better than previous attempts

    DSAC: Distributional Soft Actor Critic for Risk-Sensitive Reinforcement Learning

    Full text link
    In this paper, we present a new reinforcement learning (RL) algorithm called Distributional Soft Actor Critic (DSAC), which exploits the distributional information of accumulated rewards to achieve better performance. Seamlessly integrating SAC (which uses entropy to encourage exploration) with a principled distributional view of the underlying objective, DSAC takes into consideration the randomness in both action and rewards, and beats the state-of-the-art baselines in several continuous control benchmarks. Moreover, with the distributional information of rewards, we propose a unified framework for risk-sensitive learning, one that goes beyond maximizing only expected accumulated rewards. Under this framework we discuss three specific risk-related metrics: percentile, mean-variance and distorted expectation. Our extensive experiments demonstrate that with distribution modeling in RL, the agent performs better for both risk-averse and risk-seeking control tasks

    The Potential of the Return Distribution for Exploration in RL

    Full text link
    This paper studies the potential of the return distribution for exploration in deterministic reinforcement learning (RL) environments. We study network losses and propagation mechanisms for Gaussian, Categorical and Gaussian mixture distributions. Combined with exploration policies that leverage this return distribution, we solve, for example, a randomized Chain task of length 100, which has not been reported before when learning with neural networks.Comment: Published at the Exploration in Reinforcement Learning Workshop at the 35th International Conference on Machine Learning, Stockholm, Swede

    QUOTA: The Quantile Option Architecture for Reinforcement Learning

    Full text link
    In this paper, we propose the Quantile Option Architecture (QUOTA) for exploration based on recent advances in distributional reinforcement learning (RL). In QUOTA, decision making is based on quantiles of a value distribution, not only the mean. QUOTA provides a new dimension for exploration via making use of both optimism and pessimism of a value distribution. We demonstrate the performance advantage of QUOTA in both challenging video games and physical robot simulators.Comment: AAAI 201

    Efficient exploration with Double Uncertain Value Networks

    Full text link
    This paper studies directed exploration for reinforcement learning agents by tracking uncertainty about the value of each available action. We identify two sources of uncertainty that are relevant for exploration. The first originates from limited data (parametric uncertainty), while the second originates from the distribution of the returns (return uncertainty). We identify methods to learn these distributions with deep neural networks, where we estimate parametric uncertainty with Bayesian drop-out, while return uncertainty is propagated through the Bellman equation as a Gaussian distribution. Then, we identify that both can be jointly estimated in one network, which we call the Double Uncertain Value Network. The policy is directly derived from the learned distributions based on Thompson sampling. Experimental results show that both types of uncertainty may vastly improve learning in domains with a strong exploration challenge.Comment: Deep Reinforcement Learning Symposium @ Conference on Neural Information Processing Systems (NIPS) 201

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Full text link
    The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.Comment: Under review as a conference paper at AAAI 201

    Towards Better Interpretability in Deep Q-Networks

    Full text link
    Deep reinforcement learning techniques have demonstrated superior performance in a wide variety of environments. As improvements in training algorithms continue at a brisk pace, theoretical or empirical studies on understanding what these networks seem to learn, are far behind. In this paper we propose an interpretable neural network architecture for Q-learning which provides a global explanation of the model's behavior using key-value memories, attention and reconstructible embeddings. With a directed exploration strategy, our model can reach training rewards comparable to the state-of-the-art deep Q-learning models. However, results suggest that the features extracted by the neural network are extremely shallow and subsequent testing using out-of-sample examples shows that the agent can easily overfit to trajectories seen during training.Comment: Accepted at AAAI-19; (16 pages, 18 figures

    Implicit Quantile Networks for Distributional Reinforcement Learning

    Full text link
    In this work, we build on recent advances in distributional reinforcement learning to give a generally applicable, flexible, and state-of-the-art distributional variant of DQN. We achieve this by using quantile regression to approximate the full quantile function for the state-action return distribution. By reparameterizing a distribution over the sample space, this yields an implicitly defined return distribution and gives rise to a large class of risk-sensitive policies. We demonstrate improved performance on the 57 Atari 2600 games in the ALE, and use our algorithm's implicitly defined distributions to study the effects of risk-sensitive policies in Atari games.Comment: ICML 201
    • …
    corecore