1,558 research outputs found

    Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spatially mapped large scale gene expression databases enable quantitative comparison of data measurements across genes, anatomy, and phenotype. In most ongoing efforts to study gene expression in the mammalian brain, significant resources are applied to the mapping and visualization of data. This paper describes the implementation and utility of Brain Explorer, a 3D visualization tool for studying <it>in situ </it>hybridization-based (ISH) expression patterns in the Allen Brain Atlas, a genome-wide survey of 21,000 expression patterns in the C57BL6J adult mouse brain.</p> <p>Results</p> <p>Brain Explorer enables users to visualize gene expression data from the C57Bl/6J mouse brain in 3D at a resolution of 100 μm<sup>3</sup>, allowing co-display of several experiments as well as 179 reference neuro-anatomical structures. Brain Explorer also allows viewing of the original ISH images referenced from any point in a 3D data set. Anatomic and spatial homology searches can be performed from the application to find data sets with expression in specific structures and with similar expression patterns. This latter feature allows for anatomy independent queries and genome wide expression correlation studies.</p> <p>Conclusion</p> <p>These tools offer convenient access to detailed expression information in the adult mouse brain and the ability to perform data mining and visualization of gene expression and neuroanatomy in an integrated manner.</p

    Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas

    Full text link
    We review quantitative methods and software developed to analyze genome-scale, brain-wide spatially-mapped gene-expression data. We expose new methods based on the underlying high-dimensional geometry of voxel space and gene space, and on simulations of the distribution of co-expression networks of a given size. We apply them to the Allen Atlas of the adult mouse brain, and to the co-expression network of a set of genes related to nicotine addiction retrieved from the NicSNP database. The computational methods are implemented in {\ttfamily{BrainGeneExpressionAnalysis}}, a Matlab toolbox available for download.Comment: 25 pages, 8 figures, accepted in Quantitative Biology (2012) 000

    Computational Genetic Neuroanatomy of the Developing Mouse Brain: Dimensionality Reduction, Visualization, and Clustering

    Get PDF
    Background: The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results: In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions: Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship

    Geometry Processing of Conventionally Produced Mouse Brain Slice Images

    Full text link
    Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as an application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data.Comment: 14 pages, 11 figure

    Object-based representation and analysis of light and electron microscopic volume data using Blender

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Rapid improvements in light and electron microscopy imaging techniques and the development of 3D anatomical atlases necessitate new approaches for the visualization and analysis of image data. Pixel-based representations of raw light microscopy data suffer from limitations in the number of channels that can be visualized simultaneously. Complex electron microscopic reconstructions from large tissue volumes are also challenging to visualize and analyze. RESULTS: Here we exploit the advanced visualization capabilities and flexibility of the open-source platform Blender to visualize and analyze anatomical atlases. We use light-microscopy-based gene expression atlases and electron microscopy connectome volume data from larval stages of the marine annelid Platynereis dumerilii. We build object-based larval gene expression atlases in Blender and develop tools for annotation and coexpression analysis. We also represent and analyze connectome data including neuronal reconstructions and underlying synaptic connectivity. CONCLUSIONS: We demonstrate the power and flexibility of Blender for visualizing and exploring complex anatomical atlases. The resources we have developed for Platynereis will facilitate data sharing and the standardization of anatomical atlases for this species. The flexibility of Blender, particularly its embedded Python application programming interface, means that our methods can be easily extended to other organisms.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement 260821

    Assembling models of embryo development: Image analysis and the construction of digital atlases

    Get PDF
    Digital atlases of animal development provide a quantitative description of morphogenesis, opening the path toward processes modeling. Prototypic atlases offer a data integration framework where to gather information from cohorts of individuals with phenotypic variability. Relevant information for further theoretical reconstruction includes measurements in time and space for cell behaviors and gene expression. The latter as well as data integration in a prototypic model, rely on image processing strategies. Developing the tools to integrate and analyze biological multidimensional data are highly relevant for assessing chemical toxicity or performing drugs preclinical testing. This article surveys some of the most prominent efforts to assemble these prototypes, categorizes them according to salient criteria and discusses the key questions in the field and the future challenges toward the reconstruction of multiscale dynamics in model organisms
    • …
    corecore