382 research outputs found

    Information-centric communication in mobile and wireless networks

    Get PDF
    Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Multi-Dimensional Resource Orchestration in Vehicular Edge Networks

    Get PDF
    In the era of autonomous vehicles, the advanced technologies of connected vehicle lead to the development of driving-related applications to meet the stringent safety requirements and the infotainment applications to improve passenger experience. Newly developed vehicular applications require high-volume data transmission, accurate sensing data collection, and reliable interaction, imposing substantial constrains on vehicular networks that solely rely on cellular networks to fetch data from the Internet and on-board processors to make driving decisions. To enhance multifarious vehicular applications, Heterogeneous Vehicular Networks (HVNets) have been proposed, in which edge nodes, including base stations and roadside units, can provide network connections, resulting in significantly reduced vehicular communication cost. In addition, caching servers are equipped at the edge nodes, to further alleviate the communication load for backhaul links and reduce data downloading delay. Hence, we aim to orchestrate the multi-dimensional resources, including communication, caching, and sensing resources, in the complex and dynamic vehicular environment to enhance vehicular edge network performance. The main technical issues are: 1) to accommodate the delivery services for both location-based and popular contents, the scheme of caching contents at edge servers should be devised, considering the cooperation of caching servers at different edge nodes, the mobility of vehicles, and the differential requirements of content downloading services; 2) to support the safety message exchange and collective perception services for vehicles, communication and sensing resources are jointly allocated, the decisions of which are coupled due to the resource sharing among different services and neighboring vehicles; and 3) for interaction-intensive service provisioning, e.g., trajectory design, the forwarding resources in core networks are allocated to achieve delay-sensitive packet transmissions between vehicles and management controllers, ensuring the high-quality interactivity. In this thesis, we design the multi-dimensional resource orchestration schemes in the edge assisted HVNets to address the three technical issues. Firstly, we design a cooperative edge caching scheme to support various vehicular content downloading services, which allows vehicles to fetch one content from multiple caching servers cooperatively. In particular, we consider two types of vehicular content requests, i.e., location-based and popular contents, with different delay requirements. Both types of contents are encoded according to fountain code and cooperatively cached at multiple servers. The proposed scheme can be optimized by finding an optimal cooperative content placement that determines the placing locations and proportions for all contents. To this end, we analyze the upper bound proportion of content caching at a single server and provide the respective theoretical analysis of transmission delay and service cost (including content caching and transmission cost) for both types of contents. We then formulate an optimization problem of cooperative content placement to minimize the overall transmission delay and service cost. As the problem is a multi-objective multi-dimensional multi-choice knapsack one, which is proved to be NP-hard, we devise an ant colony optimization-based scheme to solve the problem and achieve a near-optimal solution. Simulation results are provided to validate the performance of the proposed scheme, including its convergence and optimality of caching, while guaranteeing low transmission delay and service cost. Secondly, to support the vehicular safety message transmissions, we propose a two-level adaptive resource allocation (TARA) framework. In particular, three types of safety message are considered in urban vehicular networks, i.e., the event-triggered message for urgent condition warning, the periodic message for vehicular status notification, and the message for environmental perception. Roadside units are deployed for network management, and thus messages can be transmitted through either vehicle-to-infrastructure or vehicle-to-vehicle connections. To satisfy the requirements of different message transmissions, the proposed TARA framework consists of a group-level resource reservation module and a vehicle-level resource allocation module. Particularly, the resource reservation module is designed to allocate resources to support different types of message transmission for each vehicle group at the first level, and the group is formed by a set of neighboring vehicles. To learn the implicit relation between the resource demand and message transmission requests, a supervised learning model is devised in the resource reservation module, where to obtain the training data we further propose a sequential resource allocation (SRA) scheme. Based on historical network information, the SRA scheme offline optimizes the allocation of sensing resources (i.e., choosing vehicles to provide perception data) and communication resources. With the resource reservation result for each group, the vehicle-level resource allocation module is then devised to distribute specific resources for each vehicle to satisfy the differential requirements in real time. Extensive simulation results are provided to demonstrate the effectiveness of the proposed TARA framework in terms of the high successful reception ratio and low latency for message transmissions, and the high quality of collective environmental perception. Thirdly, we investigate forwarding resource sharing scheme to support interaction intensive services in HVNets, especially for the delay-sensitive packet transmission between vehicles and management controllers. A learning-based proactive resource sharing scheme is proposed for core communication networks, where the available forwarding resources at a switch are proactively allocated to the traffic flows in order to maximize the efficiency of resource utilization with delay satisfaction. The resource sharing scheme consists of two joint modules: estimation of resource demands and allocation of available resources. For service provisioning, resource demand of each traffic flow is estimated based on the predicted packet arrival rate. Considering the distinct features of each traffic flow, a linear regression scheme is developed for resource demand estimation, utilizing the mapping relation between traffic flow status and required resources, upon which a network switch makes decision on allocating available resources for delay satisfaction and efficient resource utilization. To learn the implicit relation between the allocated resources and delay, a multi-armed bandit learning-based resource sharing scheme is proposed, which enables fast resource sharing adjustment to traffic arrival dynamics. The proposed scheme is proved to be asymptotically approaching the optimal strategy, with polynomial time complexity. Extensive simulation results are presented to demonstrate the effectiveness of the proposed resource sharing scheme in terms of delay satisfaction, traffic adaptiveness, and resource sharing gain. In summary, we have investigated the cooperative caching placement for content downloading services, joint communication and sensing resource allocation for safety message transmissions, and forwarding resource sharing scheme in core networks for interaction intensive services. The schemes developed in the thesis should provide practical and efficient solutions to manage the multi-dimensional resources in vehicular networks

    Design and Analysis of Beamforming in mmWave Networks

    Get PDF
    To support increasing data-intensive wireless applications, millimeter-wave (mmWave) communication emerges as the most promising wireless technology that offers high data rate connections by exploiting a large swath of spectrum. Beamforming (BF) that focuses the radio frequency power in a narrow direction, is adopted in mmWave communication to overcome the hostile path loss. However, the distinct high directionality feature caused by BF poses new challenges: 1) Beam alignment (BA) latency which is a processing delay that both the transmitter and the receiver align their beams to establish a reliable link. Existing BA methods incur significant BA latency on the order of seconds for a large number of beams; 2) Medium access control (MAC) degradation. To coordinate the BF training for multiple users, 802.11ad standard specifies a new MAC protocol in which all the users contend for BF training resources in a distributed manner. Due to the “deafness” problem caused by directional transmission, i.e., a user may not sense the transmission of other users, severe collisions occur in high user density scenarios, which significantly degrades the MAC performance; and 3) Backhaul congestion. All the base stations (BSs) in mmWave dense networks are connected to backbone network via backhaul links, in order to access remote content servers. Although BF technology can increase the data rate of the fronthaul links between users and the BS, the congested backhaul link becomes a new bottleneck, since deploying unconstrained wired backhaul links in mmWave dense networks is infeasible due to high costs. In this dissertation, we address each challenge respectively by 1) proposing an efficient BA algorithm; 2) evaluating and enhancing the 802.11ad MAC performance; and 3) designing an effective backhaul alleviation scheme. Firstly, we propose an efficient BA algorithm to reduce processing latency. The existing BA methods search the entire beam space to identify the optimal transmit-receive beam pair, which leads to significant latency. Thus, an efficient BA algorithm without search- ing the entire beam space is desired. Accordingly, a learning-based BA algorithm, namely hierarchical BA (HBA) algorithm is proposed which takes advantage of the correlation structure among beams such that the information from nearby beams is extracted to iden- tify the optimal beam, instead of searching the entire beam space. Furthermore, the prior knowledge on the channel fluctuation is incorporated in the proposed algorithm to further accelerate the BA process. Theoretical analysis indicates that the proposed algorithm can effectively identify the optimal beam pair with low latency. Secondly, we analyze and enhance the performance of BF training MAC (BFT-MAC) in 802.11ad. Existing analytical models for traditional omni-directional systems are un- suitable for BFT-MAC due to the distinct directional transmission feature in mmWave networks. Therefore, a thorough theoretical framework on BFT-MAC is necessary and significant. To this end, we develop a simple yet accurate analytical model to evaluate the performance of BFT-MAC. Based on our analytical model, we derive the closed-form expressions of average successful BF training probability, the normalized throughput, and the BF training latency. Asymptotic analysis indicates that the maximum normalized throughput of BFT-MAC is barely 1/e. Then, we propose an enhancement scheme which adaptively adjusts MAC parameters in tune with user density. The proposed scheme can effectively improve MAC performance in high user density scenarios. Thirdly, to alleviate backhaul burden in mmWave dense networks, edge caching that proactively caches popular contents at the edge of mmWave networks, is employed. Since the cache resource of an individual BS can only store limited contents, this significantly throttles the caching performance. We propose a cooperative edge caching policy, namely device-to-device assisted cooperative edge caching (DCEC), to enlarge cached contents by jointly utilizing cache resources of adjacent users and BSs in proximity. In addition, the proposed caching policy brings an extra advantage that the high directional transmission in mmWave communications can naturally tackle the interference issue in the cooperative caching policy. We theoretically analyze the performance of DCEC scheme taking the network density, the practical directional antenna model and the stochastic information of network topology into consideration. Theoretical results demonstrate that the proposed policy can achieve higher performance in offloading the backhaul traffic and reducing the content retrieval delay, compared with the benchmark policy. The research outcomes from the dissertation can provide insightful lights on under- standing the fundamental performance of the mmWave networks from the perspectives of BA, MAC, and backhaul. The schemes developed in the dissertation should offer practical and efficient solutions to build and optimize the mmWave networks

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    • …
    corecore