4,418 research outputs found

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    Composing Distributed Data-intensive Web Services Using a Flexible Memetic Algorithm

    Full text link
    Web Service Composition (WSC) is a particularly promising application of Web services, where multiple individual services with specific functionalities are composed to accomplish a more complex task, which must fulfil functional requirements and optimise Quality of Service (QoS) attributes, simultaneously. Additionally, large quantities of data, produced by technological advances, need to be exchanged between services. Data-intensive Web services, which manipulate and deal with those data, are of great interest to implement data-intensive processes, such as distributed Data-intensive Web Service Composition (DWSC). Researchers have proposed Evolutionary Computing (EC) fully-automated WSC techniques that meet all the above factors. Some of these works employed Memetic Algorithms (MAs) to enhance the performance of EC through increasing its exploitation ability of in searching neighbourhood area of a solution. However, those works are not efficient or effective. This paper proposes an MA-based approach to solving the problem of distributed DWSC in an effective and efficient manner. In particular, we develop an MA that hybridises EC with a flexible local search technique incorporating distance of services. An evaluation using benchmark datasets is carried out, comparing existing state-of-the-art methods. Results show that our proposed method has the highest quality and an acceptable execution time overall.Comment: arXiv admin note: text overlap with arXiv:1901.0556

    A model for characterising the collective dynamic behaviour of evolutionary algorithms

    Get PDF
    Exploration and exploitation are considered essential notions in evolutionary algorithms. However, a precise interpretation of what constitutes exploration or exploitation is clearly lacking and so are specific measures for characterising such notions. In this paper, we start addressing this issue by presenting new measures that can be used as indicators of the exploitation behaviour of an algorithm. These work by characterising the extent to which available information guides the search. More precisely, they quantify the dependency of a population's activity on the observed fitness values and genetic material, utilising an empirical model that uses a coarse-grained representation of population dynamics and records information about it. The model uses the k-means clustering algorithm to identify the population's "basins of activity". The exploitation behaviour is then captured by an entropy-based measure based on the model that quantifies the strength of the association between a population's activity distribution and the observed fitness landscape information. In experiments, we analysed the effects of the search operators and their parameter settings on the collective dynamic behaviour of populations. We also analysed the effect of using different problems on algorithm behaviours.We define a behavioural landscape for each problem to identify the appropriate behaviour to achieve good results and point out possible applications for the proposed model

    Improving resiliency using graph based evolutionary algorithms

    Get PDF
    Resiliency is an important characteristic of any system. It signifies the ability of a system to survive and recover from unprecedented disruptions. Various characteristics exist that indicate the level of resiliency in a system. One of these attributes is the adaptability of the system. This adaptability can be enhanced by redundancy present within the system. In the context of system design, redundancy can be achieved by having a diverse set of good designs for that particular system. Evolutionary algorithms are widely used in creating designs for engineering systems, as they perform well on discontinuous and/or high dimensional problems. One method to control the diversity of solutions within an evolutionary algorithm is the use of combinatorial graphs, or graph based evolutionary algorithms. This diversity of solutions is key factor to enhance the redundancy of a system design. In this work, the way how graph based evolutionary algorithms generate diverse solutions is investigated by examining the influence of representation and mutation. This allows for greater understanding of the exploratory nature of each representation and how they can control the number of solution generated within a trial. The results of this research are then applied to the Travelling [sic] Salesman Problem, a known NP hard problem often used as a surrogate for logistic or network design problems. When the redundancy in system design is improved, adaptability can be achieved by placing an agent to initiate a transfer to other good solutions in the event of a disruption in network connectivity, making it possible to improve the resiliency of the system --Abstract, page iii

    Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering

    Get PDF
    من بين الخوارزميات الأدلة العليا (الميتاهيورستك)، تعد الخوارزميات القائمة على البحوث المتعددة (المجتمع) خوارزمية بحث استكشافية متفوقة كخوارزمية البحث المحلية من حيث استكشاف مساحة البحث للعثور على الحلول المثلى العالمية. ومع ذلك، فإن الجانب السلبي الأساسي للخوارزميات القائمة على البحوث المتعددة (المجتمع) هو قدرتها الاستغلالية المنخفضة، مما يمنع توسع منطقة البحث عن الحلول المثلى. خوارزمية اليَرَاعَة المضيئة (Firefly (FA هي خوارزمية تعتمد على المجتمع والتي تم استخدامها على نطاق واسع في مشاكل التجميع. ومع ذلك، فإن FA مقيد بتقاربها السابق لأوانه عندما لا يتم استخدام استراتيجيات بحث محلي لتحسين جودة حلول المجموعات في منطقة المجاورة واستكشاف المناطق العالمية في مساحة البحث. على هذا الأساس، فإن الهدف من هذا العمل هو تحسين FA باستخدام البحث المتغير في الأحياء (VNS) كطريقة بحث محلية (FA-VNS)، وبالتالي توفير فائدة VNS للمفاضلة بين قدرات الاستكشاف والاستغلال. يسمح FA-VNS المقترح لليراعات بتحسين حلول التجميع مع القدرة على تعزيز حلول التجميع والحفاظ على تنوع حلول التجميع أثناء عملية البحث باستخدام مشغلي الاضطراب في VNS. لتقييم أداء الخوارزمية، يتم استخدام ثماني مجموعات بيانات معيارية مع أربع خوارزميات تجميع معروفة. تشير المقارنة وفقًا لمقاييس التقييم الداخلية والخارجية إلى أن FA-VNS المقترحة يمكن أن تنتج حلول تجميع أكثر إحكاما من خوارزميات التجميع المعروفة.Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On these bases, this work aims to improve FA using variable neighborhood search (VNS) as a local search method, providing VNS the benefit of the trade-off between the exploration and exploitation abilities. The proposed FA-VNS allows fireflies to improve the clustering solutions with the ability to enhance the clustering solutions and maintain the diversity of the clustering solutions during the search process using the perturbation operators of VNS. To evaluate the performance of the algorithm, eight benchmark datasets are utilized with four well-known clustering algorithms. The comparison according to the internal and external evaluation metrics indicates that the proposed FA-VNS can produce more compact clustering solutions than the well-known clustering algorithms
    corecore