1,596 research outputs found

    Structured Sequence Modeling with Graph Convolutional Recurrent Networks

    Full text link
    This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks on a vocabulary graph for natural language modeling. The proposed model combines convolutional neural networks (CNN) on graphs to identify spatial structures and RNN to find dynamic patterns. We study two possible architectures of GCRN, and apply the models to two practical problems: predicting moving MNIST data, and modeling natural language with the Penn Treebank dataset. Experiments show that exploiting simultaneously graph spatial and dynamic information about data can improve both precision and learning speed

    Prosodic Event Recognition using Convolutional Neural Networks with Context Information

    Full text link
    This paper demonstrates the potential of convolutional neural networks (CNN) for detecting and classifying prosodic events on words, specifically pitch accents and phrase boundary tones, from frame-based acoustic features. Typical approaches use not only feature representations of the word in question but also its surrounding context. We show that adding position features indicating the current word benefits the CNN. In addition, this paper discusses the generalization from a speaker-dependent modelling approach to a speaker-independent setup. The proposed method is simple and efficient and yields strong results not only in speaker-dependent but also speaker-independent cases.Comment: Interspeech 2017 4 pages, 1 figur

    Investigating bidirectional recurrent neural network language models for speech recognition

    Get PDF
    Recurrent neural network language models (RNNLMs) are powerful language modeling techniques. Significant performance improvements have been reported in a range of tasks including speech recognition compared to n-gram language models. Conventional n-gram and neural network language models are trained to predict the probability of the next word given its preceding context history. In contrast, bidirectional recurrent neural network based language models consider the context from future words as well. This complicates the inference process, but has theoretical benefits for tasks such as speech recognition as additional context information can be used. However to date, very limited or no gains in speech recognition performance have been reported with this form of model. This paper examines the issues of training bidirectional recurrent neural network language models (bi-RNNLMs) for speech recognition. A bi-RNNLM probability smoothing technique is proposed, that addresses the very sharp posteriors that are often observed in these models. The performance of the bi-RNNLMs is evaluated on three speech recognition tasks: broadcast news; meeting transcription (AMI); and low-resource systems (Babel data). On all tasks gains are observed by applying the smoothing technique to the bi-RNNLM. In addition consistent performance gains can be obtained by combining bi-RNNLMs with n-gram and uni-directional RNNLMs
    • …
    corecore