22,514 research outputs found

    Exploiting the Web for Semantic Change Detection

    Get PDF
    Detecting significant linguistic shifts in the meaning and usage of words has gained more attention over the last few years. Linguistic shifts are especially prevalent on the Internet, where words’ meaning can change rapidly. In this work, we describe the construction of a large diachronic corpus that relies on the UK Web Archive and we propose a preliminary analysis of semantic change detection exploiting a particular technique called Temporal Random Indexing. Results of the evaluation are promising and give us important insights for further investigations

    Expliciting semantic relations between ontologies in large ontology repositories

    Get PDF
    and other research outputs Expliciting semantic relations between ontologies in large ontology repositorie

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Forecasting the Spreading of Technologies in Research Communities

    Get PDF
    Technologies such as algorithms, applications and formats are an important part of the knowledge produced and reused in the research process. Typically, a technology is expected to originate in the context of a research area and then spread and contribute to several other fields. For example, Semantic Web technologies have been successfully adopted by a variety of fields, e.g., Information Retrieval, Human Computer Interaction, Biology, and many others. Unfortunately, the spreading of technologies across research areas may be a slow and inefficient process, since it is easy for researchers to be unaware of potentially relevant solutions produced by other research communities. In this paper, we hypothesise that it is possible to learn typical technology propagation patterns from historical data and to exploit this knowledge i) to anticipate where a technology may be adopted next and ii) to alert relevant stakeholders about emerging and relevant technologies in other fields. To do so, we propose the Technology-Topic Framework, a novel approach which uses a semantically enhanced technology-topic model to forecast the propagation of technologies to research areas. A formal evaluation of the approach on a set of technologies in the Semantic Web and Artificial Intelligence areas has produced excellent results, confirming the validity of our solution
    • …
    corecore